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Tandem chemoselective Suzuki-Miyaura cross-coupling enabled 

by nucleophile speciation control  

Ciaran. P. Seath, James W. B. Fyfe, John J. Molloy and Allan J. B. Watson* 

Abstract: Control of boronic acid speciation is presented as a 

strategy to achieve nucleophile chemoselectivity in the Suzuki-

Miyaura reaction. Combined with simultaneous control of oxidative 

addition and transmetallation, this enables chemoselective formation 

of two C-C bonds in a single operation, providing a method for the 

rapid preparation of highly functionalized carbogenic frameworks. 

The Suzuki-Miyaura reaction is the primary method for Pd-

catalyzed cross-coupling, accounting for over 40% of C-C bond 

constructions in the pharmaceutical industry alone.
[1,2]

 

Chemoselective control of this reaction is currently limited to 

single mechanistic events, focusing on either the electrophile or 

nucleophile independently.
[3]

 Electrophile selectivity has been 

thoroughly demonstrated by exploiting the well-defined 

principles of oxidative addition (I > Br > Cl, etc.; Scheme 1a)
[4,5]

 

while nucleophile selectivity has been achieved through the use 

of inert (protected) boronic acid derivatives (Scheme 1b (i))
[6]

 or 

a geminal/vicinal diboron self-activation mechanism (Scheme 1b 

(ii)).
[7]

 Despite these advances, general nucleophile 

chemoselectivity remains elusive. Reactions are therefore 

limited to only one selective C-C bond forming event,
[8]

 with 

sequential chemoselective cross-coupling achieved only through 

separate reactions.
[3,6n,9] 

Establishing simultaneous electrophile 

and nucleophile selectivity to allow successive C-C bond-

forming events in a single reaction remains unsolved.  
 

 
Scheme 1. Approaches to chemoselective Suzuki-Miyaura cross-coupling. 

Cat=catalyst, MIDA=N-methyliminodiacetic acid, OA=oxidative addition, 

PG=protecting group, Pin=pinacolato, TM=transmetallation. 

Recently, we demonstrated that boron speciation can be 

controlled during Suzuki-Miyaura cross-coupling to enable 

chemoselective and quantitative ligand exchange in situ.
[10]

 Here 

we report that boron speciation, oxidative addition, and 

transmetallation can be simultaneously controlled to enable two 

chemoselective Suzuki-Miyaura C-C bond formations in a single 

catalytic process (Scheme 1c). This provides a simple yet 

powerful solution to achieving nucleophile chemoselectivity and 

enables the rapid and efficient synthesis of high value products. 

Tandem chemoselective Suzuki-Miyaura cross-coupling was 

initially explored using the benchmark reaction of phenyl BPin 1, 

4-bromophenyl BMIDA 2, and aryl chloride 3 (Table 1). The 

reaction design plan required three distinct chemoselective 

events to cooperate simultaneously. Cross-coupling of 1 and 2 

to produce the expected biaryl BMIDA intermediate 4,
[6r,10] 

based 

upon selective oxidative addition of 2 vs. 3 and transmetallation 

of 1 vs. 2; (ii) formation of BPin 6 from the BMIDA intermediate 

and 5 via control of speciation;
[10]

 and (iii) cross-coupling of 6 

with 3 to deliver 7a. Control of these events represented a 

significant challenge. Chemoselective oxidative addition can be 

capricious and reaction/catalyst dependent
[4a,5]

 – premature 

reaction of 1 and 3 would deliver 8. Hydrolysis of 2 must be 

controlled to avoid premature transmetallation of the latent 

boronic acid and uncontrolled oligomerization, leading to 9.
[10, 11]

 

However, this must be levied against the requirement of 

aqueous base to facilitate effective cross-coupling
[12]

 and ensure 

effective speciation manipulation.
[10]

  

 
Table 1. Reaction development. 

 

Entry Catalyst
[a]

 K3PO4 (equiv) H2O (equiv) 7a:6:8 (%)
[b]

 

1 PdCl2dppf
[c]

 3 5 0:100:0 

2 Pd(OAc)2, SPhos 3 5 17:42:4 

3 Pd(OAc)2, SPhos 3 10 35:23:11 

4 Pd(OAc)2, SPhos 3 20 53:4:25 

5 Pd(OAc)2, SPhos 4 20 88:0:0 

6 Pd(OAc)2, SPhos 4 30 41:0:24 

7 Pd(OAc)2, SPhos 4 40 25:13:0 

8 Pd(OAc)2, SPhos 5 20 80:0:11 

[a] 4 mol% Pd, 8 mol% ligand. [b] Determined by HPLC analysis. [c] 4 mol%. 
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Initial evaluation of a catalyst system based on our previous 

work failed to deliver the desired triaryl product 7a; the reaction 

produced only the formal homologation adduct 6 with aryl 

chloride 3 returned, indicating problematic oxidative addition with 

this less reactive electrophile (entry 1). Moving to a more 

activated catalyst system (Pd(OAc)2, SPhos;
[13,14]

 entry 2) 

provided low conversion to 7a with the mass balance consisting 

mainly of 6 as well as 8, the product of reaction of 1 + 3, 

indicating a lack of electrophile chemoselectivity. Lowering the 

reaction temperature to avoid premature engagement of 3 led to 

lower overall conversion (see ESI). A systematic evaluation of 

the stoichiometric relationship between K3PO4 (a range of bases 

were evaluated, see ESI) and H2O revealed that cross-coupling 

efficiency could be directly influenced by the medium without 

resorting to specific tailoring of the catalyst.
[5]

 Increasing the 

quantity of H2O increased the overall conversion (i.e., improved 

engagement of 3) but also led to extensive oligomerization due 

to poor speciation control (entries 3 and 4). This could be 

mitigated by increasing the quantity of K3PO4,
[10]

 which provided 

excellent levels of conversion to 7a (entry 5). Further increases 

in H2O led to oligomerization giving increased 9 (entries 6 and 7), 

which could again be tempered by increasing the quantity of 

K3PO4 (entry 8). Accordingly, these results further demonstrate 

that in addition to speciation control, cross-coupling efficiency 

can also be directly influenced by relatively minor adjustments to 

the composition of the reaction medium.
[1c]

 A survey of various 

catalyst systems with the optimum biphase composition did not 

provide any further improvement in the chemical yield (see ESI). 

It is important to note that the optimized reaction is effective 

with equal stoichiometries of 1, 2, and 3, i.e., the 

chemoselectivity and yield are not statistically prejudiced 

through use of impractical and uneconomical stoichiometries of 

any component or by tailoring (e.g., electronic or steric bias) of 

the nucleophile.
[9]

 The reaction rates are harmonized such that 

BPin 1 reacts only with aryl bromide 2, speciation control 

delivers BPin 6 at a rate that avoids oligomerization or 

competition with 1,
[10b]

 and 6 reacts only with aryl chloride 3.  

With our optimum reaction conditions in hand, the scope of 

the tandem cross-coupling protocol was explored (Scheme 2). 

The general concept was also readily transferred to a modified 

system using dihaloarenes as conjunctive bis-electrophiles in 

combination with two differentiated boronic acid-derived 

nucleophiles (Scheme 3). In this process, the slightly less active 

DavePhos
[14,15]

 ligand was found to be more suitable. The 

reaction efficiencies between the two complementary processes 

are comparable, for example, the preparation of 7a is produced 

in 82% and 91% yield, respectively (Scheme 2 vs. Scheme 3). 

This synthetic flexibility provides an array of diverse product 

scaffolds in a single operation and enhances scope based on 

the wider selection of available reaction components. 

A broad range of coupling partner was accommodated in 

both protocols, including useful functionality on the BPin, BMIDA, 

and aryl chloride components, such as ethers, esters, fluorides, 

nitriles, ketones, olefins, and heterocyclic residues. Notably, 

heteroaryl and alkenyl BMIDA, which must progress via the 

protodeboronation prone parent boronic acids,
[6e,16]

 were 

effectively incorporated. Yields were typically high and 

synthetically useful, especially when the number of individual 

processes is considered. 

 

Scheme 2. Chemoselective tandem Suzuki-Miyaura cross-coupling using 

conjunctive haloaryl BMIDA components. Isolated yields of pure products. 

 

Scheme 3. Chemoselective tandem Suzuki-Miyaura cross-coupling using 

conjunctive dihalide components. Isolated yields of pure products. Ac=acetyl. 
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In a departure from exploiting the standard reactivity profiles 

of the electrophile (i.e., Br > Cl), we sought to further 

demonstrate the potential of tandem chemoselective Suzuki-

Miyaura cross-coupling by utilizing specific reactivity gradients of 

dibromo- or dichloro-electrophiles (Scheme 4). For example, 

tandem C-C bond formation was possible using 2,4-

dichloropyrimidine to deliver 8a in 70% yield.
[17]

 The increased 

lability of alkenyl electrophiles vs. aryl electrophiles allows 

chemoselective cross coupling of 1,β-dibromostyrene to provide 

8b in 79% yield.
[18]

 Similarly, sp
2
/sp

3
 electrophile selectivity can 

be achieved using 4-bromobenzyl bromide to provide 8c in 84% 

yield. Lastly, more subtle effects can be exploited: Dihaloarenes 

have been shown to undergo either selective mono-arylation or 

exhaustive arylation under specific Suzuki-Miyaura 

conditions.
[8,19]

 Under our developed protocol, 1,4-

dibromobenzene undergoes sequential chemoselective C-C 

bond formation to provide 8d in 60% yield.  

 

Scheme 4. Chemoselective tandem Suzuki-Miyaura cross-coupling using 

dibromo- and dichloro-electrophiles. Isolated yields of pure products. 

The synthetic applicability of our protocol was further 

exemplified in the rapid synthesis of the BET bromodomain 

inhibitor 14 (Scheme 5).
[20]

 Chemoselective sp
2
-sp

2
 cross-

coupling of conjunctive bromoaryl BMIDA 9 and dimethyl 

isoxazole BPin 10, delivers intermediate BMIDA 11, which is 

converted to the reactive BPin derivative 12 in situ via speciation 

control. This then engages benzyl chloride in an sp
2
-sp

3
 C-C 

bond formation to provide the key core structure 13 in 70% yield. 

Oxidation and reduction delivers 14. 

In conclusion, we have shown that oxidative addition, boron 

speciation, and transmetallation can be chemoselectively and 

simultaneously controlled to enable tandem Suzuki-Miyaura C-C 

bond formation in a single operation. This method provides a 

simple solution to the nucleophile selectivity issue within Suzuki-

Miyaura cross-coupling and demonstrates the power of 

chemoselective cross-coupling to access highly functionalized 

carbogenic frameworks. 

 

Scheme 5. Synthesis of BET bromodomain inhibitor 14 via tandem sp
2
-

sp
2
/sp

2
-sp

3
 Suzuki-Miyaura cross-coupling. 
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