252 research outputs found

    Zero-frequency anomaly in quasiclassical ac transport: Memory effects in a two-dimensional metal with a long-range random potential or random magnetic field

    Get PDF
    We study the low-frequency behavior of the {\it ac} conductivity σ(ω)\sigma(\omega) of a two-dimensional fermion gas subject to a smooth random potential (RP) or random magnetic field (RMF). We find a non-analytic ω\propto|\omega| correction to Reσ{\rm Re} \sigma, which corresponds to a 1/t21/t^2 long-time tail in the velocity correlation function. This contribution is induced by return processes neglected in Boltzmann transport theory. The prefactor of this ω|\omega|-term is positive and proportional to (d/l)2(d/l)^2 for RP, while it is of opposite sign and proportional to d/ld/l in the weak RMF case, where ll is the mean free path and dd the disorder correlation length. This non-analytic correction also exists in the strong RMF regime, when the transport is of a percolating nature. The analytical results are supported and complemented by numerical simulations.Comment: 12 pages, RevTeX, 7 figure

    Strong magnetoresistance induced by long-range disorder

    Get PDF
    We calculate the semiclassical magnetoresistivity ρxx(B)\rho_{xx}(B) of non-interacting fermions in two dimensions moving in a weak and smoothly varying random potential or random magnetic field. We demonstrate that in a broad range of magnetic fields the non-Markovian character of the transport leads to a strong positive magnetoresistance. The effect is especially pronounced in the case of a random magnetic field where ρxx(B)\rho_{xx}(B) becomes parametrically much larger than its B=0 value.Comment: REVTEX, 4 pages, 2 eps figure

    Supporting citizen inquiry: an investigation of Moon rock

    Get PDF
    Citizen inquiry is an innovative way for non-professionals to engage in practical scientific activities, in which they take the role of self-regulated scientists in informal learning contexts. This type of activity has similarities to inquiry-based learning and to citizen science, but also important differences. To understand the challenges of supporting citizen inquiry, a prototype system and activity has been developed: the Moon Rock Explorer. Based on the nQuire Toolkit, this offers people without geology expertise an open investigation into authentic specimens of Moon rock, using a Virtual Microscope. The Moon Rock Explorer inquiry has been evaluated in an informal learning context with PhD students from the Open University. Results of the evaluation raise issues related to motivation and interaction between inquiry participants. They also provide evidence that the integration of scientific tools was successful and that the nQuire Toolkit is suitable to deploy and enact citizen inquiries

    Reduced TRPC Channel Expression in Psoriatic Keratinocytes Is Associated with Impaired Differentiation and Enhanced Proliferation

    Get PDF
    Psoriasis is a characteristic inflammatory and scaly skin condition with typical histopathological features including increased proliferation and hampered differentiation of keratinocytes. The activation of innate and adaptive inflammatory cellular immune responses is considered to be the main trigger factor of the epidermal changes in psoriatic skin. However, the molecular players that are involved in enhanced proliferation and impaired differentiation of psoriatic keratinocytes are only partly understood. One important factor that regulates differentiation on the cellular level is Ca2+. In normal epidermis, a Ca2+ gradient exists that is disturbed in psoriatic plaques, favoring impaired keratinocyte proliferation. Several TRPC channels such as TRPC1, TRPC4, or TRPC6 are key proteins in the regulation of high [Ca2+]ex induced differentiation. Here, we investigated if TRPC channel function is impaired in psoriasis using calcium imaging, RT-PCR, western blot analysis and immunohistochemical staining of skin biopsies. We demonstrated substantial defects in Ca2+ influx in psoriatic keratinocytes in response to high extracellular Ca2+ levels, associated with a downregulation of all TRPC channels investigated, including TRPC6 channels. As TRPC6 channel activation can partially overcome this Ca2+ entry defect, specific TRPC channel activators may be potential new drug candidates for the topical treatment of psoriasis

    HIF1-alpha overexpression indicates a good prognosis in early stage squamous cell carcinomas of the oral floor

    Get PDF
    BACKGROUND: Hypoxia-inducible factor 1 (HIF-1) is a transcription factor, which plays a central role in biologic processes under hypoxic conditions, especially concerning tumour angiogenesis. HIF-1α is the relevant, oxygen-dependent subunit and its overexpression has been associated with a poor prognosis in a variety of malignant tumours. Therefore, HIF-1α expression in early stage oral carcinomas was evaluated in relation to established clinico-pathological features in order to determine its value as a prognostic marker. METHODS: 85 patients with histologically proven surgically treated T1/2 squamous cell carcinoma (SCC) of the oral floor were eligible for the study. Tumor specimens were investigated by means of tissue micro arrays (TMAs) and immunohistochemistry for the expression of HIF-1. Correlations between clinical features and the expression of HIF-1 were evaluated by Kaplan-Meier curves, log-rank tests and multivariate Cox regression analysis. RESULTS: HIF-1α was frequently overexpressed in a probably non-hypoxia related fashion. The expression of HIF-1α was related with a significantly improved 5-year survival rate (p < 0.01) and a significantly increased disease free period (p = 0.01) independent from nodal status and tumour size. In primary node negative T1/T2 SCC of the oral floor, absence of HIF-1α expression specified a subgroup of high-risk patients (p < 0.05). CONCLUSION: HIF-1α overexpression is an indicator of favourable prognosis in T1 and T2 SCC of the oral floor. Node negative patients lacking HIF-1α expression may therefore be considered for adjuvant radiotherapy

    Negative energy balance in dairy cows is associated with specific changes in IGF-binding protein expression in the oviduct

    Get PDF
    Negative energy balance (NEB) during early lactation in dairy cows leads to an altered metabolic state that has major effects on the production of IGF family members. Low IGF-I concentrations are associated with poor fertility and therefore we aimed to determine whether NEB exerts a direct effect on IGF expression in the postpartum oviduct. Multiparous Holstein cows were allocated to two treatments (each n=6) designed using differential feeding and milking regimes to produce either mild NEB (MNEB) or severe NEB (SNEB). Animals were slaughtered in week 2 of lactation when divergent metabolic profiles were evident. Oviducts were collected for RNA analysis by real-time RT-PCR and in situ hybridisation. Quantitative measures in oviduct gene expression were obtained for all members of the IGF family (IGF-I/II, IGF-binding proteins (IGFBP) 1–6 and receptors for IGF types 1 and 2), insulin A/B, GH, glucocorticoid and oestrogen α/β. Expression of IGFBP-2 and IGFBP-6 (both of which have a high affinity for IGF-II) was decreased in SNEB relative to MNEB (P<0.05). No other gene was altered by NEB, but IGF-II, IGFBP-3, IGFBP-5 and IGFBP-6 all showed differential expression in different regions of the oviduct. These results indicate that, in addition to low circulating IGF-I after calving, NEB may also influence IGF availability in the oviduct indirectly through changes in specific IGFBP expression. It is possible that the predicted increased signalling by IGF-II may perturb embryo development, contributing to the high rates of embryonic mortality in dairy cows

    Core module biomarker identification with network exploration for breast cancer metastasis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In a complex disease, the expression of many genes can be significantly altered, leading to the appearance of a differentially expressed "disease module". Some of these genes directly correspond to the disease phenotype, (i.e. "driver" genes), while others represent closely-related first-degree neighbours in gene interaction space. The remaining genes consist of further removed "passenger" genes, which are often not directly related to the original cause of the disease. For prognostic and diagnostic purposes, it is crucial to be able to separate the group of "driver" genes and their first-degree neighbours, (i.e. "core module") from the general "disease module".</p> <p>Results</p> <p>We have developed COMBINER: COre Module Biomarker Identification with Network ExploRation. COMBINER is a novel pathway-based approach for selecting highly reproducible discriminative biomarkers. We applied COMBINER to three benchmark breast cancer datasets for identifying prognostic biomarkers. COMBINER-derived biomarkers exhibited 10-fold higher reproducibility than other methods, with up to 30-fold greater enrichment for known cancer-related genes, and 4-fold enrichment for known breast cancer susceptible genes. More than 50% and 40% of the resulting biomarkers were cancer and breast cancer specific, respectively. The identified modules were overlaid onto a map of intracellular pathways that comprehensively highlighted the hallmarks of cancer. Furthermore, we constructed a global regulatory network intertwining several functional clusters and uncovered 13 confident "driver" genes of breast cancer metastasis.</p> <p>Conclusions</p> <p>COMBINER can efficiently and robustly identify disease core module genes and construct their associated regulatory network. In the same way, it is potentially applicable in the characterization of any disease that can be probed with microarrays.</p

    Diagnosis, Genetics, and Therapy of Short Stature in Children: A Growth Hormone Research Society International Perspective

    Get PDF
    The Growth Hormone Research Society (GRS) convened a Workshop in March 2019 to evaluate the diagnosis and therapy of short stature in children. Forty-six international experts participated at the invitation of GRS including clinicians, basic scientists, and representatives from regulatory agencies and the pharmaceutical industry. Following plenary presentations addressing the current diagnosis and therapy of short stature in children, breakout groups discussed questions produced in advance by the planning committee and reconvened to share the group reports. A writing team assembled one document that was subsequently discussed and revised by participants. Participants from regulatory agencies and pharmaceutical companies were not part of the writing process. Short stature is the most common reason for referral to the pediatric endocrinologist. History, physical examination, and auxology remain the most important methods for understanding the reasons for the short stature. While some long-standing topics of controversy continue to generate debate, including in whom, and how, to perform and interpret growth hormone stimulation tests, new research areas are changing the clinical landscape, such as the genetics of short stature, selection of patients for genetic testing, and interpretation of genetic tests in the clinical setting. What dose of growth hormone to start, how to adjust the dose, and how to identify and manage a suboptimal response are still topics to debate. Additional areas that are expected to transform the growth field include the development of long-acting growth hormone preparations and other new therapeutics and diagnostics that may increase adult height or aid in the diagnosis of growth hormone deficiency.info:eu-repo/semantics/publishedVersio
    corecore