192 research outputs found

    Polychromatic Coloring for Half-Planes

    Full text link
    We prove that for every integer kk, every finite set of points in the plane can be kk-colored so that every half-plane that contains at least 2k−12k-1 points, also contains at least one point from every color class. We also show that the bound 2k−12k-1 is best possible. This improves the best previously known lower and upper bounds of 43k\frac{4}{3}k and 4k−14k-1 respectively. We also show that every finite set of half-planes can be kk colored so that if a point pp belongs to a subset HpH_p of at least 3k−23k-2 of the half-planes then HpH_p contains a half-plane from every color class. This improves the best previously known upper bound of 8k−38k-3. Another corollary of our first result is a new proof of the existence of small size \eps-nets for points in the plane with respect to half-planes.Comment: 11 pages, 5 figure

    Linearizable special cases of the QAP

    Get PDF
    We consider special cases of the quadratic assignment problem (QAP) that are linearizable in the sense of Bookhold. We provide combinatorial characterizations of the linearizable instances of the weighted feedback arc set QAP, and of the linearizable instances of the traveling salesman QAP. As a by-product, this yields a new well-solvable special case of the weighted feedback arc set problem

    New special cases of the quadratic assignment problem with diagonally structured coefficient matrices

    Get PDF
    We consider new polynomially solvable cases of the well-known Quadratic Assignment Problem involving coefficient matrices with a special diagonal structure. By combining the new special cases with polynomially solvable special cases known in the literature we obtain a new and larger class of polynomially solvable special cases of the QAP where one of the two coefficient matrices involved is a Robinson matrix with an additional structural property: this matrix can be represented as a conic combination of cut matrices in a certain normal form. The other matrix is a conic combination of a monotone anti-Monge matrix and a down-benevolent Toeplitz matrix. We consider the recognition problem for the special class of Robinson matrices mentioned above and show that it can be solved in polynomial time

    Polygons with inscribed circles and prescribed side lengths

    Get PDF
    AbstractWe prove NP-completeness of the following problem: For n given input numbers, decide whether there exists an n-sided, plane, convex polygon that has an inscribed circle and that has the input numbers as side lengths

    Universal quantum computation by discontinuous quantum walk

    Full text link
    Quantum walks are the quantum-mechanical analog of random walks, in which a quantum `walker' evolves between initial and final states by traversing the edges of a graph, either in discrete steps from node to node or via continuous evolution under the Hamiltonian furnished by the adjacency matrix of the graph. We present a hybrid scheme for universal quantum computation in which a quantum walker takes discrete steps of continuous evolution. This `discontinuous' quantum walk employs perfect quantum state transfer between two nodes of specific subgraphs chosen to implement a universal gate set, thereby ensuring unitary evolution without requiring the introduction of an ancillary coin space. The run time is linear in the number of simulated qubits and gates. The scheme allows multiple runs of the algorithm to be executed almost simultaneously by starting walkers one timestep apart.Comment: 7 pages, revte

    The Alcuin number of a graph and its connections to the vertex cover number

    Get PDF
    We consider a planning problem that generalizes Alcuin's river crossing problem to scenarios with arbitrary conflict graphs. This generalization leads to the so-called Alcuin number of the underlying conflict graph. We derive a variety of combinatorial, structural, algorithmical, and complexity theoretical results around the Alcuin number. Our technical main result is an NP-certificate for the Alcuin number. It turns out that the Alcuin number of a graph is closely related to the size of a minimum vertex cover in the graph, and we unravel several surprising connections between these two graph parameters. We provide hardness results and a fixed parameter tractability result for computing the Alcuin number. Furthermore we demonstrate that the Alcuin number of chordal graphs, bipartite graphs, and planar graphs is substantially easier to analyze than the Alcuin number of general graphs

    Relating the Time Complexity of Optimization Problems in Light of the Exponential-Time Hypothesis

    Full text link
    Obtaining lower bounds for NP-hard problems has for a long time been an active area of research. Recent algebraic techniques introduced by Jonsson et al. (SODA 2013) show that the time complexity of the parameterized SAT(⋅\cdot) problem correlates to the lattice of strong partial clones. With this ordering they isolated a relation RR such that SAT(RR) can be solved at least as fast as any other NP-hard SAT(⋅\cdot) problem. In this paper we extend this method and show that such languages also exist for the max ones problem (MaxOnes(Γ\Gamma)) and the Boolean valued constraint satisfaction problem over finite-valued constraint languages (VCSP(Δ\Delta)). With the help of these languages we relate MaxOnes and VCSP to the exponential time hypothesis in several different ways.Comment: This is an extended version of Relating the Time Complexity of Optimization Problems in Light of the Exponential-Time Hypothesis, appearing in Proceedings of the 39th International Symposium on Mathematical Foundations of Computer Science MFCS 2014 Budapest, August 25-29, 201

    Travelling salesman paths on Demidenko matrices

    Get PDF
    In the path version of the Travelling Salesman Problem (Path-TSP), a salesman is looking for the shortest Hamiltonian path through a set of n cities. The salesman has to start his journey at a given city s, visit every city exactly once, and finally end his trip at another given city t. In this paper we show that a special case of the Path-TSP with a Demidenko distance matrix is solvable in polynomial time. Demidenko distance matrices fulfill a particular condition abstracted from the convex Euclidian special case by Demidenko (1979) as an extension of an earlier work of Kalmanson (1975). We identify a number of crucial combinatorial properties of the optimal solution and design a dynamic programming approach with time complexity O(n6)

    THE WAIT-AND-SEE OPTION IN ASCENDING PRICE AUCTIONS

    Get PDF
    Cake-cutting protocols aim at dividing a ``cake'' (i.e., a divisible resource) and assigning the resulting portions to several players in a way that each of the players feels to have received a ``fair'' amount of the cake. An important notion of fairness is envy-freeness: No player wishes to switch the portion of the cake received with another player's portion. Despite intense efforts in the past, it is still an open question whether there is a \emph{finite bounded} envy-free cake-cutting protocol for an arbitrary number of players, and even for four players. We introduce the notion of degree of guaranteed envy-freeness (DGEF) as a measure of how good a cake-cutting protocol can approximate the ideal of envy-freeness while keeping the protocol finite bounded (trading being disregarded). We propose a new finite bounded proportional protocol for any number n \geq 3 of players, and show that this protocol has a DGEF of 1 + \lceil (n^2)/2 \rceil. This is the currently best DGEF among known finite bounded cake-cutting protocols for an arbitrary number of players. We will make the case that improving the DGEF even further is a tough challenge, and determine, for comparison, the DGEF of selected known finite bounded cake-cutting protocols.Comment: 37 pages, 4 figure
    • 

    corecore