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New special cases of the Quadratic Assignment

Problem with diagonally structured coefficient

matrices

Eranda Çela∗ Vladimir Deineko† Gerhard J. Woeginger‡

Abstract

We consider new polynomially solvable cases of the well-known Quadratic Assignment
Problem involving coefficient matrices with a special diagonal structure. By combining
the new special cases with polynomially solvable special cases known in the literature we
obtain a new and larger class of polynomially solvable special cases of the QAP where one
of the two coefficient matrices involved is a Robinson matrix with an additional structural
property: this matrix can be represented as a conic combination of cut matrices in a
certain normal form. The other matrix is a conic combination of a monotone anti-Monge
matrix and a down-benevolent Toeplitz matrix. We consider the recognition problem for
the special class of Robinson matrices mentioned above and show that it can be solved in
polynomial time.

Keywords. combinatorial optimization; quadratic assignment; Robinsonian; cut matrix;
Monge matrix; Kalmanson matrix.

1 Introduction

In this paper we investigate the Quadratic Assignment Problem (QAP), which is a well-known
problem in combinatorial optimization; we refer the reader to the book [9] by Çela and the
book [6] by Burkard, Dell’Amico & Martello for comprehensive surveys on the QAP. The
QAP in Koopmans-Beckmann form [25] takes as input two n × n square matrices A = (aij)
and B = (bij) with real entries and will be denoted by QAP (A,B). The goal is to find a
permutation π that minimizes the objective function

Zπ(A,B) :=

n∑
i=1

n∑
j=1

aπ(i)π(j) bij . (1)

Equivalently the objective function can be written as 〈Aπ, B〉 = Tr(AπBT ), where Aπ =
(aπij) = (aπ(i)π(j)) is the matrix which results from matrix A after permuting both its rows and
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its columns according to permutation π. Tr is the trace operator and Tr(AπBT ) is the trace
of the product of the matrices Aπ and B. The formulation of the goal function of the QAP by
means of the trace operator is used in many applications, see eg. [9, 19]. Here π ranges over
the set Sn of all permutations of {1, 2, . . . , n}.

The QAP is a notoriously difficult problem both from the practical and from the theoretical
point of view. In spite of the amazing development of computer and software technology
nowadays it is still considered a challenge to exactly solve moderate size instances of size more
than 30, i.e. n ≥ 30 [30]. From the theoretical point of view Sahni and Gonzalez [40] have
shown that no constant-factor approximation algorithm exists for the QAP unless P = NP .
Queyranne [36] has shown that the existence of a constant-factor approximation algorithm for
QAP (A,B) implies P = NP even in the case where A is the distance matrix of a set of points
in the Euclidean line and B is a block-diagonal symmetric 0-1-matrix with zeroes on the main
diagonal.

One branch of research on the QAP concentrates on the algorithmic behavior of strongly
structured special cases; see for instance Burkard & al [5], Deineko & Woeginger [18], Çela &
al [13], Çela, Deineko & Woeginger [10], and Laurent and Seminaroti [27] for typical results in
this direction.

In our paper we follow recent developments and present several new results in this exciting
area of research. In particular we discuss two new polynomially solvable special cases (p.s.s.
cases) of the QAP involving diagonally structured matrices, see Definition 2.2. The new p.s.s.
cases are the down-benevolent QAP and the up-benevolent QAP. The down-benevolent QAP
is a QAP (A,B) with A being both a Kalmanson and a Robinson matrix (see Definition 2.6
and 2.1, respectively) and B being a down-benevolent Toeplitz matrix (see Definition 2.2).
This problem is solved to optimality by the identity permutation which will be denoted by id
in the sequel. This new p.s.s. case is related to two other p.s.s. cases of the QAP known in
the literature: (a) QAP (A,B) with A being a Kalmanson matrix and B being a DW Toeplitz
matrix (see [18] and Definition 2.6), and (b) QAP (A,B) with A being a Robinson matrix and
B being a simple Toeplitz matrix [27]. In the new p.s.s. case matrix A is more special and
matrix B is more general than in the previous two p.s.s. cases. The up-benevolent QAP is
a QAP(A,B) with A being a PS anti-Monge matrix (see Definition 3.7) and B being an up-
benevolent Toeplitz matrix (see Definition 2.2). This problem is solved to optimality by the
identity permutation. This new p.s.s. case is a generalization of another p.s.s. case of the QAP
known in the literature, namely QAP (A,B) where A is a symmetric monotone anti-Monge
matrix and B is an up-benevolent Toeplitz matrix [5].

Further we focus on the so-called combined p.s.s. cases of the problem. They arise as a
combination of different p.s.s. cases of the QAP which involve matrices of the same type1.
This approach is interesting because it allows the identification of new and more complex p.s.s.
cases of the QAP. In particular we show that a QAP (A,B) with A being a conic combination
of a symmetric anti-Monge matrix (see Definition 2.6) and a down-benevolent Toeplitz matrix
(see Definition 2.2) and B being a conic combination of cut matrices in CDW normal form (see
Definition 2.4) is solved by the identity permutation. Further we tackle a relevant question in
this context, namely the recognition of cut matrices in CDW normal form, and show that it

1A short discussion on one of the combined special cases presented in this paper was published in [12]
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can be decided efficiently.

Motivation. A direct, intrinsic and purely theoretical motivation is the identification of
further p.s.s. cases and the better delimitation of the border between “simple” and “hard”
cases of the QAP. From a more practical point of view, while being indeed very special and
highly structured some of the p.s.s. cases discussed in this paper appear when modeling the
seriation problem, which in turn has practical applications, for example in archaeology, gene
sequencing, or order recovering for disordered Markov chains, see Fogel et al. [19] and the
references therein.

Moreover it would be interesting to investigate whether the combined special cases of the
QAP can be used to compute good lower bounds and/or heuristic solutions for the general
problem. The idea is to “approximate” the coefficient matrices A and B of a given instance
QAP (A,B) by some matrices A′ and B′, respectively, such that QAP (A′, B′) is an instance
of a combined p.s.s. special case. Then, if A′ and B′ are chosen “appropriately”, the optimal
solution of QAP (A′, B′) and its optimal value could serve as a heuristic solution and/or a lower
bound for QAP (A,B), respectively. Clearly, the crucial part is to find out what “approximate”
and “appropriately” should mean, and this is definitely a challenging issue.

Outline of the paper. The paper is organized as follows. In Section 2 we define the matrix
classes which play a role in the p.s.s. cases discussed in this paper and review relevant results
from the literature. In the Section 3 we introduce two new p.s.s. cases of the QAP, the so-
called down-benevolent QAP in Section 3.1, and the up-benevolent QAP in Section 3.2. Then
in Section 3.3 we extend the variety of known p.s.s. cases of the QAP by introducing the so-
called combined p.s.s. cases. Section 4 deals with conic representations of specially structured
matrices. In Section 4.1 Kalmanson matrices and matrices which are both Kalmanson and
Robinson matrices are characterized in terms of conic combinations of particular cut matrices.
These results are then used in Section 4.2 to give a characterization of conic combinations
of cut-matrices in CDW normal form. This characterization allows the efficient recognition of
conic combinations of cut matrices in CDW normal form. Notice that this recognition problem
is relevant because the conic combinations of cut matrices in CDW normal form are involved in
the first combined p.s.s. case described in Section 3.3. We conclude with a summary of results
and some issues for further research in Section 5.

2 Preliminaries and definitions

There are already quite a number of results known on p.s.s. cases of the QAP where the
coefficient matrices A and B possess specific structural properties. We provide an overview of
this kind of p.s.s. cases by introducing a classification of the involved coefficient matrices with
particular properties and distinguish the following matrix classes.

Matrices with monotonicity properties including Robinson dissimilarities (called Robin-
son matrices in the following), Robinson similarities, monotone matrices, see Defini-
tion 2.1 later in this section.

Matrices with diagonal structural properties including Toeplitz matrices, circulant ma-
trices, simple Toeplitz matrices, DW-Toeplitz matrices, up-benevolent Toeplitz matrices
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and down-benevolent Toeplitz matrices, see Definition 2.2.

Matrices with block structural properties including block matrices, cut matrices and
cut matrices in CDW normal form, see Definition 2.4.

Matrices defined in terms of four-point conditions including Monge matrices, anti-
Monge matrices and Kalmanson matrices, see Definition 2.6.

Sum matrices and constant matrices including sum matrices, weak sum matrices and
weak constant matrices, see Definition 2.8.

Further we recall some existing results on p.s.s. cases where these matrix classes are involved.

Definition 2.1 (Matrices with monotonicity properties)
A symmetric matrix A = (aij) is a Robinson dissimilarity or briefly a Robinson matrix, if for
all i < j < k it satisfies the conditions aik ≥ max{aij , ajk}; in words, the entries in the matrix
are placed in non-decreasing order in each row and column when moving away from the main
diagonal.

A symmetric matrix A = (aij) is a Robinson similarity, if for all i < j < k it satisfies the
conditions aik ≤ min{aij , ajk}. 2

An n× n matrix B = (bij) is called monotone, if bij ≤ bi,j+1 and bij ≤ bi+1,j holds for all
i, j ∈ {1, 2, . . . , n}, that is, if the entries in every row and column are sorted non-decreasingly
from the left to the right and from the top to the bottom, respectively.

In some QAP special cases considered in this paper the diagonal elements of the coefficient
matrices do not impact the optimal solution. In these cases we assume them to be zero and
set aii = 0, for all i.

The Robinson matrices were first introduced by Robinson [38] in 1951 in the context of
an analysis of archaeological data. Since then they have been widely used in combinatorial
data analysis; see the books [21, 22, 31, 32] and the surveys [3, 8] for examples of various
applications of Robinson structures in quantitative psychology, analysis of DNA sequences,
cluster analysis, etc. Special cases of the QAP involving Robinson matrices are discussed in
Laurent and Seminaroti [27] and in Fogel et al. [19].

Definition 2.2 (Matrices with diagonal structural properties)
An n×n matrix B = (bij) is called a Toeplitz matrix if it has constant entries along each of its
diagonals; in other words, there exists a function f : {−n+1,−n+2, . . . ,−1, 0, 1, . . . , n−1} → R
such that bij = f(i− j), for all 1 ≤ i, j ≤ n. The Toeplitz matrix B is fully determined by the
function f and therefore f will be called the generating function of B. If f(i) = f(i− n) holds
for every i ∈ {1, 2, . . . , n− 1}, the Toeplitz matrix B is called a circulant matrix.

A symmetric Toeplitz matrix whose generating function f fulfills f(0) = 0 and f(1) ≥
f(2) ≥ . . . ≥ f(n − 1) will be called a simple Toeplitz matrix. (Notice that a simple Toeplitz

2We define a Robinson matrix to be a dissimilarity. Notice that besides this definition also the definition of
a Robinson matrix as a similarity is encountered in the literature.

4



matrix is a Toeplitz Robinson similarity with zeroes on the main diagonal.) These matrices
were introduced by Laurent and Seminaroti [27].

A symmetric n × n circulant matrix B whose generating function f fulfills f(0) = 0,
f(1) ≥ f(2) ≥ . . . ≥ f(dn−12 e) is called a DW-Toeplitz matrix. (Notice that in a symmetric
circulant matrix f(i) = f(n − i) holds for all i > dn−12 e). These matrices were introduced in
Deineko and Woeginger [18].

A symmetric n×n Toeplitz matrix B whose generating function f fulfills f(0) = 0, f(1) ≤
f(2) ≤ . . . ≤ f(dn−12 e) and f(i) ≤ f(n − i), for all i ≤ dn−12 e, is called an up-benevolent
Toeplitz matrix. These matrices where introduced in [5] as benevolent Toeplitz matrices.

Analogously a symmetric n×n Toeplitz matrix B whose generating function f fulfills f(0) =
0, f(1) ≥ f(2) ≥ . . . ≥ f(dn−12 e) and f(i) ≥ f(n − i), for all i ≤ dn−12 e, is called a down-
benevolent Toeplitz matrix.

Finally the attributes down-benevolent and up-benevolent will be also used for the generating
functions of the Toeplitz matrices having the corresponding properties, respectively. So we
will talk about down-benevolent functions and up-benevolent functions defined over {−n +
1, . . . ,−1, 0, 1, . . . , n− 1}.

The structures introduced above appeared in several special cases of the QAP dealt with
in the papers already cited in Introduction. One of the most recent results was presented by
Laurent & Seminaroti in [27], and will be of special interest in the context of the paper at
hand.

Theorem 2.3 (Laurent & Seminaroti [27])
QAP (A,B), where A is a Robinson matrix and B is a simple Toeplitz matrix is solved to
optimality by the identity permutation.

To help readers to better understand structures involved in various QAP special cases, we
use here a color coding to visualize these structures. Figure 1 illustrates Robinson matrices
and simple Toeplitz matrices - the darker the color the larger the value of the corresponding
matrix entries; the white color corresponds to zero entries. The instances of matrices used for
the illustrations can be found in Appendix.

Definition 2.4 (Matrices with block structural properties)
Let a q× q matrix P = (pij) be fixed. An n× n matrix B = (bij) is called a block matrix with
block pattern P if the following holds

(i) there exists a partition of the set of row and column indices {1, . . . , n} into q (possibly
empty) sets I1, . . . , Iq such that for 1 ≤ k ≤ q − 1 all elements of Ik are smaller than all
elements of Ik+1,

(ii) for all pairs of indices (i, j) with i ∈ Ik and j ∈ I` the equality bij = pk` holds, for all
k, ` ∈ {1, 2, . . . , q}

The sets I1, . . . , Iq are called row and column blocks of matrix B. If it is clear from context
we will sometimes refer to these sets as the blocks of matrix B.
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A B

Figure 1: Illustration of the QAP instance considered in Laurent & Seminaroti QAP[27]: A -
Robinson dissimilarity, B - simple Toeplitz matrix; the darker the color the larger the entries
of the matrix.

A cut matrix B is a block matrix whose block pattern has 0’s along the main diagonal and 1’s
everywhere else. A cut matrix is in CDW normal form, if its block sizes are in non-decreasing
order, i.e. |I1| ≤ |I2| ≤ · · · ≤ |Iq| holds. (These matrices were introduced in [11].)

It is easy to see that any cut matrix is a Robinson matrix. Theorem 2.3 implies that if
A is a cut matrix and B is a simple Toeplitz matrix, then the QAP is solved by the identity
permutation. Another p.s.s. case of the QAP involving cut matrices which will be of special
interest in the context of this paper was identified by Çela, Deineko & Woeginger [11].

Theorem 2.5 (Çela, Deineko & Woeginger [11])
QAP (A,B), where A is a cut matrix in CDW normal form and B is a monotone anti-Monge
matrix (see Definition 2.6) is solved to optimality by the identity permutation.

As a consequence of this result QAP (A,B) where A is a Robinson matrix obtained as a
conic combination of cut matrices in CDW normal form, (i.e., A is a linear combination of
such matrices with non-negative weight coefficients) and B is a monotone anti-Monge matrix is
solved by the identity permutation. This special case is illustrated in Figure 2. The fulfillment
of the anti-Monge inequalities is illustrated by the symbol “+”. Notice that the block structure
of matrix A is not that obvious any more in the picture.

In the context of the special case mentioned in Theorem 2.5 the recognition of Robinson
matrices, which can be represented as conic combinations of cut matrices in CDW normal
form, becomes relevant:

Given an n × n Robinson matrix, can it be represented as a conic combination of
cut matrices in CDW normal form?

The solution of this non-trivial problem is discussed in Section 4.2. In general the recogni-
tion problem for a special classes K of matrices asks whether a given a matrix A belongs to the

6



A B

Figure 2: Illustration of a generalisation of the Cela, Deineko & Woeginger QAP [11]: A - a
conic combination of Block matrices in CDW normal form, B - anti-Monge monotone matrix;
the darker the color the larger the entries of the matrix.

class K or not. Recognition problems can be highly non-trivial. There are a number of papers
dealing with recognition problems for different (permuted) classes of matrices, especially also
for Robinson matrices [1, 15, 26, 28].

As an illustrative example for the recognition of a conic combination of cut matrices in
CDW normal form we consider the following Robinson matrix:

C =



0 1 2 3 3 3
1 0 2 3 3 3
2 2 0 2 3 3
3 3 2 0 2 2
3 3 3 2 0 1
3 3 3 2 1 0


which is obtained as a sum of three cut-matrices C = C1+C2+C3; here matrix C1 has the three
blocks {1, 2, 3}, {4}, {5, 6}, matrix C2 has three blocks {1, 2}, {3}, {4, 5, 6}, and matrix C3

has five blocks {1}, {2}, {3, 4}, {5}, and {6}. As none of these matrices above is a cut matrix
in CDW normal form, there are no reasons to assume that the QAP with C and a monotone
anti-Monge matrix B is solved by the identity permutation. In Section 4.2 we will revisit this
example after the proof of Theorem 4.6 and will show that C can indeed be represented as
a conic combination of cut matrices in CDW normal form. Hence the corresponding QAP is
solved by the identity permutation.

Definition 2.6 (Matrices defined in terms of four point conditions)
An n × n matrix B is a Monge matrix, if its entries are non-negative and satisfy the Monge
inequalities

bij + brs ≤ bis + brj for 1 ≤ i < r ≤ n and 1 ≤ j < s ≤ n. (2)

7



In other words, in every 2×2 submatrix the sum of the entries on the main diagonal is smaller
than the sum of the entries on the other diagonal. (The Monge property essentially dates back
to the work of Gaspard Monge [33] in the 18th century.)

Analogously, an n × n matrix B is an anti-Monge matrix, if its entries are non-negative
and satisfy the anti-Monge inequalities

bij + brs ≥ bis + brj for 1 ≤ i < r ≤ n and 1 ≤ j < s ≤ n. (3)

A symmetric n× n matrix (cij) is called a Kalmanson matrix, if it satisfies the conditions

cij + ckl ≤ cik + cjl (4)

cik + cjl ≥ cil + cjk (5)

for all i,j,k and l with 1 ≤ i < j < k < l ≤ n. (These matrices were introduced in 1975 by
Kenneth Kalmanson [23].)

Kalmanson matrices can be also defined as matrices which fulfill the following inequalities:

ci,j+1 + ci+1,j ≤ cij + ci+1,j+1 ∀i, j : 1 ≤ i ≤ n− 3, i+ 2 ≤ j ≤ n− 1, (6)

ci,1 + ci+1,n ≤ cin + ci+1,1 ∀i : 2 ≤ i ≤ n− 2. (7)

In this equivalent characterisation (proved for example in [16, 17]), the fulfillment of (4)-(5)
is required just for O(n2) quadruples of entries.

Much research has been done on the role played by these classes of matrices in combinatorial
optimization, in particular with respect to p.s.s. cases of hard combinatorial optimization
problems arising when (one of) the input matrices belongs to some of those classes. Probably
the first reference in this context is due to Supnik [41], while the term “four point conditions”
was independently introduced by Quintas & Supnick [37] and Buneman [4].

Monge structures play a special role in p.s.s. cases of the QAP [5, 11, 13]. We refer the
reader to the survey [7] by Burkard, Klinz & Rudolf for more general information on Monge
and anti-Monge structures.

Kalmanson matrices play a role in p.s.s. cases of the QAP [18] and also in special cases of a
number of other combinatorial optimization problems as the travelling salesman problem [23],
the prize-collecting TSP [14], the master tour problem [17], the Steiner tree problem [24], the
three-dimensional matching problem [35].

A special case of the QAP involving a Kalmanson matrix and relevant also in the context
of this paper was considered by Deineko & Woeginger [18].

Theorem 2.7 (Deineko & Woeginger [18])
The QAP(A,B) where A is a Kalmanson matrix and B is a DW-Toeplitz matrix is solved to
optimality by the identity permutation.

This special case is illustrated in Figure 3. The inequalities (4) and (5) fulfilled by the entries
of the Kalmanson matrix C are illustrated by the “+” and “-”, respectively.

Finally we formally define (weak) sum and constant matrices.
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A B

Figure 3: Illustration of the Deineko & Woeginger QAP[18] : A - a Kalmanson matrix, B - a
DW-Toeplitz matrix.

Definition 2.8 (Sum matrices and constant matrices)
An n× n matrix A = (aij) is called a sum matrix, iff there exist real numbers α1, . . . , αn and
β1, . . . , βn such that

aij = αi + βj for 1 ≤ i, j ≤ n. (8)

An n × n matrix A = (aij) is called a constant matrix, if all elements in the matrix are
the same. Notice that a constant matrix is just a special case of a sum matrix.

An n × n matrix A = (aij) is called a weak sum matrix, if A can be turned into a sum
matrix by appropriately changing the entries on its main diagonal. Equivalently, a matrix A is
a weak sum matrix iff there exist real numbers α1, . . . , αn and β1, . . . , βn such that aij = αi+βj
for 1 ≤ i, j ≤ n, i 6= j.

An n × n matrix A = (aij) is a weak constant matrix, if A can be turned into a constant
matrix by appropriately changing the entries on its main diagonal, or equivalently, if all its
off-diagonal entries have a common value.

Notice that a constant matrix A fulfills all matrix properties introduced in this section, with
exception of the properties of cut matrices (in CDW normal form); A is a cut matrix (in CDW
normal form) only iff its entries equal 1.

We close this session with a well known and easily proved observation which formalizes
the relationship between the optimal solutions of two QAP instances of the same size, where
the input matrices of one of them are obtained by permuting the input matrices of the other
instance, respectively.

Observation 2.9 Let A and B be two n × n matrices, and let π, ψ ∈ Sn, where Sn is the
set of permutations of {1, 2, . . . , n}. Let Aπ := (aπij) (Bψ := (bψij)) be the matrix obtained
from A (B) by permuting its rows and columns according to the permutations π (ψ). Then
Zφ(Aπ, Bψ) = Zφ◦π◦ψ−1(A,B), for all φ ∈ Sn. Moreover, if φ∗ ∈ Sn is an optimal solution of
QAP (A,B) then φ∗ ◦ ψ ◦ π−1 is an optimal solution of QAP (Aπ, Bψ). Finally, the optimal
objective function values of the two problems QAP (A,B) and QAP (Aπ, Bψ) coincide.

9



A B

Figure 4: Illustration of Theorem 3.4: A - a Kalmanson and Robinson matrix, B - a down-
benevolent Toeplitz matrix.

3 New special cases of the QAP solved by the identity permu-
tation

3.1 The down-benevolent QAP

In this section we consider a new p.s.s. case QAP (A,B) which we call down-benevolent QAP:
A is both a Robinson matrix and a Kalmanson matrix, and B is a down-benevolent Toeplitz
matrix. We show that this special case, illustrated in Figure 4, is solved by the identity
permutation.

Notice that a simple Toeplitz matrix is a special case of a down-benevolent Toeplitz matrix.
Analogously a DW-Toeplitz matrix is also a special case of a down-benevolent Toeplitz matrix.
Thus, the QAP p.s.s. case considered here is related to the QAP p.s.s. cases considered in [27]
and in [18]. In [27] it was shown that QAP (A,B) with A being a Robinson matrix and B
being a simple Toeplitz matrix is solved by the identity permutation. In [18] it was shown that
QAP (A,B) with A being a Kalmanson matrix and B being a DW-Toeplitz matrix is solved
by the identity permutation. The new special case involves a matrix B from a class which is
strictly larger than both classes of matrices B considered in [18, 27]. However the matrix A
is required to have more restrictive properties than in [18, 27]: A is both a Robinson and a
Kalmanson matrix.

In the following we will work with some particular symmetric 0-1 Toeplitz matrices.

Definition 3.1 For n ∈ N and i ∈ N, dn−12 e < i ≤ n − 1, let T (i) be the 0-1 Toeplitz matrix

with entries fulfilling T
(i)
kl = 1 iff |k − l| = i.

It can be easily seen that every n× n down-benevolent Toeplitz matrix can be obtained from
a DW-Toeplitz matrix by subtracting from it a conic combination of Toeplitz T (i). More
precisely the following lemma holds.
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Lemma 3.2 Let B be an n× n down-benevolent Toeplitz matrix. Then there exists an n× n
DW-Toeplitz matrix B′ and nonnegative numbers βi, dn−12 e < i ≤ n − 1, such that B =

B′ −
∑n−1

i=dn−1
2
e+1

βiT
(i), where T (i) is defined as in Definition 3.1.

Proof. For a given down-benevolent Toeplitz matrix B = (bkl) define a DW-Toeplitz matrix
B′ = (b′kl) as follows: b′kl = bkl for k, l ∈ {1, 2, . . . , n} with |k − l| ≤ dn−12 e and b′kl = b1,αkl for
k, l ∈ {1, 2, . . . , n} with |k − l| > dn−12 e, where αkl = n+ 1− |k − l|. It can be easily seen that

B′ is a DW-Toeplitz matrix and that B = B′ −
∑n−1

i=dn−1
2
e+1

βiT
(i), where βi = b′1,i+1 − b1,i+1

for all i ∈ {1, 2, . . . , n− 1}, dn−12 e ≤ i ≤ n− 1. �

Let n be an arbitrary but fixed natural number and i ∈ N, dn−12 e < i ≤ n − 1. Con-

sider the maximization version of QAP (A, T (i)) with an n × n Kalmanson matrix A which
is also a Robinson matrix, and a T (i) is a Toeplitz matrix as above. Thus we deal with
the optimization problem max{Zπ(A, T (i)) : π ∈ Sn}, where Sn is the set of permutations of
{1, 2, . . . , n}. Observe that T (i) contains exactly 2(n − i) ones placed in pairwise symmetric
positions with respect to the diagonal. The 1-entries above the diagonal lie in the rows with
indices {1, 2, . . . , n − i} and in the columns with indices {i + 1, i + 2, . . . n} with exactly one
1-entry per row and column. Notice that since i > dn−12 e the sets of row indices and column

indices above do not intersect. The objective function value of QAP (A, T (i)) corresponding to
permutation π ∈ Sn is given as

Zπ(A, T (i)) =

n∑
k=1

n∑
j=1

aπ(k)π(j)T
(i)
kj =

n−i∑
k=1

aπ(k)π(k+i) +

n∑
k=i+1

aπ(k)π(k−i) = 2

n−i∑
k=1

aπ(k)π(k+i) ,

where the last equality holds because A is by definition a symmetric matrix. Thus Zπ(A, T (i)) is
just the sum of 2(n−i) pairwise symmetric (non-diagonal) entries selected from A, such that in
every row and column there is at most one selected entry. Notice that if each pair of symmetric
entries is represented by the above-diagonal entry than the goal function QAP (A, T (i)) can be
seen as twice the sum of n − i above-diagonal entries selected in A such that the row indices
of selected entries build a set R, the column indices of selected entries build a set C, and
R ∩ C = ∅ as well as |R| = |C| = n− i hold.

Vice versa, consider a set of row indices R and a set of column indices C with R ∩ C = ∅,
|R| = |C| = n − i and a bijection φ : R → C. Now select in A the entries aiφ(i), for i ∈ R,
together with their symmetric counterparts. It can be easily seen that the overall sum of
these selected entries equals Zπ(A, T (i)) for any π ∈ Sn with {π(1), π(2), π(n − i)} = R,
π(i+ j) = φ(π(j)), for 1 ≤ j ≤ n− i. Thus the maximization version of QAP (A, T (i)) of size
n with i such that dn−12 e < i ≤ n− 1 is equivalent to the following selection problem

Selection problem

Input: n ∈ N, a Kalmanson and Robinson n × n matrix A, i ∈ N such that
dn−12 e < i ≤ n− 1 holds.

Output: Select (n − i) above-diagonal entries arjcj , 1 ≤ j ≤ n − i, from A, such

that the overall sum
∑n−i

j=1 arjcj of the selected entries is maximized, under the
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condition that the set R = {rj : 1 ≤ j ≤ n− i} of row indices of the selected entries
and the set C = {cj : 1 ≤ j ≤ n− i} of column indices of the selected entries fulfill
R ∩ C = ∅, |R| = |C| = n− i.

Since in the selection problem we select n − i entries with at most one entry per row, its
solution can be represented by a pair (R,φ), where R is the set of indices of the selected rows,
|R| = n − i, and φ : R → {1, 2 . . . , n} is an injective mapping which maps each r ∈ R to the
column index of the entry arφ(r) selected in row r. Then, clearly, R ∩ C = ∅ would hold with
C = {φ(r) : r ∈ R}. If an entry ajl is selected in a solution (R,φ), i.e. φ(j) = l, j ∈ R, we will
say that row index j is matched with column index l and column index l is matched with row
index j in that solution.

Next we show that the maximization version of QAP (A, T (i)), with n ∈ N and i ∈ N,
dn−12 e < i ≤ n− 1, is solved by the identity permutation.

Lemma 3.3 The maximization version of QAP (A, T (i)) with an n×n Kalmanson and Robin-
son matrix A and a Toeplitz matrix T (i), i > dn−12 e, defined in Definition 3.1 is solved to
optimality by the identity permutation.

Proof. We consider the corresponding selection problem and show that it is solved to opti-
mality by selecting the entries a1,1+i, a2,2+i, ..., an−i,n. Clearly, this selection is feasible and
corresponds to the identity permutation in Sn as an optimal solution of the maximization
version of QAP (A, T (i)), and this would complete the proof.

Consider an optimal solution (R,φ) of the selection problem where the row indices of the
selected entries build the set R = {r1, r2, . . . , rn−i} and the corresponding column indices are
φ(rj), for 1 ≤ j ≤ n − i. Then, clearly, R ∩ {φ(rj) : 1 ≤ j ≤ n − i} = ∅ holds. Assume
w.l.o.g. that r1 < r2 < . . . rn−i. First we claim that there exists an optimal solution with
max{rj : 1 ≤ j ≤ n − i} < min{φ(rj) : 1 ≤ j ≤ n − i}, i.e. an optimal solution with the
following property:

(P): any row index of a selected entry is smaller that any column index of a selected entry.
Assume the optimal solution (R,φ) above does not have Property P. Then there exist two

indices j, l ∈ {1, 2, . . . , n−i} such that φ(rl) < rj holds. Let rj be the smallest element in R for
which such a column index of a selected entry smaller than rj exists, i.e. φ(R)∩{1, 2, . . . , rj−1} 6=
∅, and let rl be such that φ(rl) is the smallest column index of a selected entry which is smaller
than rj , i.e. φ(rl) = minφ(R) ∩ {1, 2, . . . , rj−1}.

Then we clearly have rl < φ(rl) < rj < φ(rj). Consider a pair (R′, φ′) obtained by
exchanging rj and φ(rl) in the following sense:

R′ := (R \ {rj}) ∪ {φ(rl)}

φ′(r) = φ(r), ∀r ∈ R \ {rj , rl} and φ′(rl) = rj , φ
′(φ(rl)) = φ(rj).

(R′, φ′) is a feasible solution of the selection problem because the two entries arlφ(rl), arjφ(rj)
selected with (R,φ) are replaced by the entries arlrj , aφ(rl)φ(rj) selected with (R′, φ′) and the
sets R′, C ′ of the row and column indices of selected entries, respectively, fulfill the properties

12



R′ ∩ C ′ = ∅, |R′| = |C ′| = n − i. Moreover, since A is a Kalmanson matrix inequality (4)
applies and we get

arlrj + aφ(rl)φ(rj) ≥ arlφ(rl) + arjφ(rj) .

Thus the solution (R′, φ′) is not worse than the optimal solution (R,φ), hence it is also an
optimal solution. If (R′, φ′) does not have property P, then there will be again a smallest row
index rk of a selected entry for which there exists a column index of a selected entry which is
smaller than rk. Notice that in this case rk has to be larger than rj because for indices in the
set (R∪C)∩{1, 2, . . . , rj−1} the following statement holds: any row index of an entry selected
by the solution (R′, φ′) is smaller than any column index of an entry selected by (R′, φ′). So,
if (R′, φ′) does not have property P, then we could perform again an exchange to obtain a
new optimal solution as described above. We would repeat this step as long as the current
optimal solution does not have property P. The process would terminate because the smallest
row index of a selected entry for which there is an even smaller column index of a selected
entry, increases in every repetition of the exchange step described above. So the claim about
the existence of an optimal solution with the property P is proven.

Let (R,φ) be an optimal solution with property P and let R = {r1, r2, . . . , rn−i} be the
row indices of the selected entries with r1 < r2 < . . . rn−i. We can assume w.l.o.g. that
rl < rj implies φ(rl) < φ(rj), for all l, j ∈ {1, 2, . . . , n − i}. Indeed if there exists a pair
rl < rj for which φ(rl) > φ(rj), then consider the solution (R,φ′) with φ′(rk) = φ(rk) for all
k ∈ {1, 2, . . . , n − i} \ {j, l} and φ′(j) = φ(l), φ′(l) = φ(j). Thus the entries arlφ(rl), arjφ(rj)
selected with (R,φ) are replaced by the entries arlφ(rj), arjφ(rl) selected with (R,φ′). From
inequality (5) in the definition of Kalmanson matrices we get

arlφ(rj) + arjφ(rl) ≥ arlφ(rl) + arjφ(rj) ,

which implies that the solution (R,φ′) is not worse than the optimal solution (R,φ). Hence
(R,φ′) is an optimal solution.

Let us denote the set of column indices of the entries selected with (R,φ) by C =
{c1, c2, . . . , cn−i} where c1 < c2 < . . . < cn−i. Then the selected entries are arjcj , j =
1, 2, . . . , n − i, and r1 < r2 < . . . < rn−i < c1 < c2 < . . . < cn−i holds. The last inequal-
ities imply j ≤ rj and cj ≤ i + j, for all j = 1, 2, . . . , n − i. Since matrix A is a Robinson
matrix we get arjcj ≤ aj,i+j , for all j = 1, 2, . . . , n− i, which imply

n−i∑
j=1

arjcj ≤
n−i∑
j=1

aj,i+j .

Hence selecting the entries a1,1+i, a2,2+i, ..., an−i,n is not worse then the optimal solution
(R,φ), which means that a1,1+i, a2,2+i, ..., an−i,n is an optimal selection. �

Theorem 3.4 QAP (A,B) where A is both a Robinson matrix and a Kalmanson matrix, and
B is a down-benevolent Toeplitz matrix, is solved to optimality by the identity permutation id.
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Proof. According to Lemma 3.2 there exists a DW-Toeplitz matrixB′ and nonnegative numbers
βi ≥ 0, dn−12 e < i ≤ n− 1, such that

B = B′ −
n−1∑

i=dn−1
2
e+1

βiT
(i) , (9)

where T (i) is the Toeplitz matrix defined in Definition 3.1. Equation (9) implies:

Zπ(A,B) = Zπ(A,B′)−
n−1∑

i=dn−1
2
e+1

βiZπ(A, T (i)) .

Theorem 2.7 implies QAP (A,B′) is solved to optimality by the identity permutation and
Lemma 3.3 implies that the maximization version of QAP (A, T (i)) with T (i) as above is solved
to optimality by the identity permutation for all i > dn−12 e. Summarizing we get:

Zπ(A,B) = Zπ(A,B′)−
n−1∑

i=dn−1
2
e+1

βiZπ(A, T (i)) ≥

Zid(A,B
′)−

n−1∑
i=dn−1

2
e+1

βiZid(A, T
(i)) = Zid(A,B)

for all π ∈ Sn. �

3.2 The up-benevolent QAP

Burkard & al. [5] have considered QAP (A,B) with a monotone anti-Monge matrix A with
nonnegative entries and an up-benevolent Toeplitz matrix B (called benevolent Toeplitz matrix
in the original paper). They have proven the following result:

Theorem 3.5 (Burkard & al. [5])
QAP (A,B) with a monotone anti-Monge matrix A with nonnegative entries and an up-
benevolent Toeplitz matrix B is solved to optimality by the so-called Supnick permutation
π∗ = 〈1, 3, 5, . . . , 6, 4, 2〉.

An illustration of this special case is presented in Figure 5.
In [5] it was shown that for any n ∈ N the n× n monotone anti-Monge matrices with non-

negative entries form a cone whose extremal rays are given by the 0-1 matrices R(p,q) =
(
r
(p,q)
ij

)
,

with a p × q block of ones in the lower-right corner, for 1 ≤ p, q ≤ n. Thus r
(p,q)
ij = 1 if

n−p+1 ≤ i ≤ n and n−q+1 ≤ j ≤ n, and r
(p,q)
ij = 0, otherwise. As a consequence of this fact

it can be shown that the extremal rays of the cone of symmetric monotone anti-Monge matrices

with nonnegative entries are the matrices R̄(p,q) := R(p,q) +R(q,p) =
(
r̄
(p,q)
ij

)
, for 1 ≤ p < q ≤ n,
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A B

Figure 5: Illustration of the special case of Burkard & al. [5] QAP: A - an anti-Monge matrix,
to be permuted with π∗; B - an up-benevolent Toeplitz matrix.

see Rudolf and Woeginger [39], Burkard et al. [5], and Çela et al. [11]. R̄(p,q) are explicitly
given as follows.

r̄
(p,q)
ij =


2, n− p+ 1 ≤ i, j ≤ n
1, n− q + 1 ≤ i ≤ n− p, n− p+ 1 ≤ j ≤ n
1, n− p+ 1 ≤ i ≤ n, n− q + 1 ≤ j ≤ n− p
0, otherwise

Further let us denote R̄(p,p) = R(p,p), 1 ≤ p ≤ n, for the sake of completeness. Thus the
following lemma holds.

Lemma 3.6 The symmetric monotone anti-Monge matrices with nonnegative entries form a
cone with extremal rays given as R̄(p,q), for 1 ≤ p < q ≤ n, and R(p,p), for 1 ≤ p ≤ n.

According to Observation 2.9, if π∗ is an optimal solution of QAP (A,B) with a symmetric
monotone anti-Monge matrix A and an up-benevolent matrix B, then id is an optimal solution
of QAP (Aπ

∗
, B). In particular this clearly holds for A = R̄(p,q) with 1 ≤ p ≤ q ≤ n. Notice

that, in general, the permuted matrix Aπ
∗

is not an anti-Monge matrix any more. Figure 6
illustrates the effect of permuting the 10× 10 matrix R̄(2,7) according to permutation π∗.

Let us denote by R̄(p,q,π∗) the matrix obtained by permuting R̄(p,q) according to the Supnick
permutation π∗, 1 ≤ p ≤ q ≤ n.3

By taking a closer look at the matrices R̄(p,q,π∗) we can observe that they are given as
follows

r̄
(p,q,π∗)
ji = r̄

(p,q,π∗)
ij =



2 dn−p2 e+ 1 ≤ i, j ≤ n− bn−p2 c

1 dn−p2 e − b
q−p
2 c+ 1 ≤ i ≤ dn−p2 e , d

n−p
2 e+ 1 ≤ j ≤ n− bn−p2 c

1 dn−p2 e+ 1 ≤ i ≤ n− bn−p2 c , n− b
n−p
2 c+ 1 ≤ j ≤ n− bn−p2 c+ d q−p2 e

0 otherwise

3The consistent notation would be (R̄(p,q))π
∗

but we are using R̄(p,q,π∗) instead, for the ease of presentation.
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A Aπ
∗

Figure 6: Illustration of permuted matrices: A := R̄(2,7) - a 10 × 10 symmetric monotone
anti-Monge matrix; Aπ

∗
- a permuted anti-Monge matrix: four anti-Monge inequalities are

violated; the quadruples of entries involved in the violated inequalities are the ones around the
“minus” signs, respectively.

for 1 ≤ i ≤ j ≤ n.

Thus the non-zero entries of these permuted matrices build a kind of a cross with entries
equal to 2 at the center of the cross and entries equal to 1 at the arms of the cross (see also
Figure 6). Now consider a transformation of the matrix R̄(p,q,π∗) realized by sliding the cross
of non-zero entries along the diagonal such that its arms do not wrap around the border of the
matrix (they may touch the border but should not wrap around it). This transformation is
done by permuting (the rows and columns of) R(p,q,π∗) according to a shift σu ∈ Sn of the form
〈u, u+1, . . . , n, 1, . . . , u−1〉 with 1 < u ≤ dn−p2 e−b

q−p
2 c+1, or n−bn−p2 c+d

q−p
2 e+1 ≤ u ≤ n.

Let us denote by C(p,q,u) the matrix obtained from R(p,q,π∗) by permuting it according to
σu with u as described above. Obviously Z(C(p,q,u), B, id) = Z(R̄(p,q,π∗), B, id) holds for all
1 ≤ p ≤ q ≤ n, for all possible values of u as given above, and for any Toeplitz matrix B. This
is due to the facts that a) the permutation σu shifts non-zero entries of R̄(p,q) along lines parallel
to the main diagonal and b) a Toeplitz matrix has constant entries along any line parallel to
the main diagonal. Combined with the third statement of Observation 2.9 the above equation
shows that id is also the optimal solution of QAP (C(p,q,u), B). This observation motivates the
following definition.

Definition 3.7 Let C(p,q,u) be the matrix obtained from R(p,q,π∗) by permuting it according
to σu, where σu ∈ Sn is a shift of the form 〈u, u + 1, . . . , n, 1, . . . , u − 1〉 with 1 < u ≤
dn−p2 e− b

q−p
2 c+ 1 or n−bn−p2 c+ d q−p2 e+ 1 ≤ u ≤ n. A symmetric n×n matrix A′ is called a

permuted-shifted anti-Monge matrix (PS anti-Monge matrix ), if it can be obtained as a conic
combination of R(p,q,π∗) and matrices C(p,q,u), for 1 ≤ p ≤ q ≤ n, and 1 < u ≤ dn−p2 e−b

q−p
2 c+1

or n− bn−p2 c+ d q−p2 e+ 1 ≤ u ≤ n.
Analogously, a symmetric n× n matrix A′ is called a permuted-shifted Monge matrix (PS

Monge matrix ), if it can be obtained from a permuted-shifted anti-Monge A by multiplying

16



it by −1 and by then adding a sum matrix to it (which can also be the zero matrix, i.e. the
matrix containing only entries equal to zero). See Figure 7 for a graphical illustration of PS
anti-Monge and PS Monge matrices.

Summarizing we have proved the following result (recall that a sum matrix is both Monge and
anti-Monge):

Theorem 3.8 QAP (A,B) with a PS anti-Monge matrix A and an up-benevolent Toeplitz
matrix B is solved to optimality by the identity permutation.

Notice that this result is a strict generalization of the result of Burkard & al. [5], because
the permutation of a PS-anti-Monge matrix by the inverse (π∗)−1 of the Supnick permutation
π∗ does not yield an anti-Monge matrix in general.

Finally observe that, clearly, the n × n PS anti-Monge matrices form also cone whose
extremal rays are the matrices C(p,q,u) with 1 ≤ p ≤ q ≤ n, 1 < u ≤ dn−p2 e − b

q−p
2 c + 1, or

n− bn−p2 c+ d q−p2 e+ 1 ≤ u ≤ n. Thus these extremal rays build a three parametric family of
matrices in contrast to the extremal rays of the (symmetric) monotone anti-Monge matrices
which build a two parametric family.

Since the equality Z(A,B, π) = Z(−A,−B, π) trivially holds for any permutation π,
QAP (A,B) and QAP (−A,−B) have the same set of optimal solutions. Notice, moreover,
that if B is up-benevolent Toeplitz matrix than −B is a down-benevolent Toeplitz matrix.
Summarizing we obtain:

Corollary 3.9 QAP (A,B) with a PS Monge matrix A and a down-benevolent Toeplitz matrix
B is solved to optimality by the identity permutation.

A A−

Figure 7: Illustration of PS matrices: A, a PS anti-Monge matrix; A−, a PS Monge matrix;
Monge (anti-Monge) conditions are not satisfied any more.
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3.3 Combined QAPs

In the previous sections we reviewed known p.s.s. cases of the QAP and proved some new
results. Some of the old and new p.s.s. cases use the same special structures, for example the
cut matrices in CDW normal form are involved in the old p.s.s. case described in Theorem 2.5
and in the new p.s.s. case described in Theorem 3.4. In this section we show that such old
and new p.s.s. cases can be combined into new structures and new p.s.s. cases.

Cut matrices in CDW normal form. Consider a QAP (A,B) where the matrix A
is a conic combination of cut matrices in CDW normal form. Since this matrix is both a
Kalmanson and a Robinson matrix, we can combine the old p.s.s. case described in Theorem 2.5
and the new p.s.s. case presented in Theorem 3.4: matrix B can now be chosen to be a conic
combination of two matrices, a symmetric monotone anti-Monge matrix and a down-benevolent
Toeplitz matrix (see illustration on Figure 8).

A

+

B1 B2

Figure 8: Illustration of QAP (A,B1 + B2) where A is a conic combination of cut matrices in
CDW normal form, B1 is a monotone anti-Monge matrix, B2 is a down-benevolent Toeplitz
matrix.

Down-benevolent Toeplitz. By combining the p.s.s. cases described in Theorem 3.4
and in Corollary 3.9 we get a new p.s.s. case QAP (A,B1 +B2), where A is a down-benevolent
Toeplitz matrix, and the second matrix B is a conic combination of matrices which are both
Kalmanson and Robinson matrices and a PS Monge matrix (see illustration on Figure 9).

A

+

B1 B2

Figure 9: Illustration of QAP (A,B1 +B2) where A is a down-benevolent Toeplitz matrix, B1

is a PS monotone Monge matrix, B2 is a Kalmanson and Robinson matrix.
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DW-Toeplitz. Let A be a DW-Toeplitz matrix. Clearly such a matrix A is a special
down-benevolent matrix. By definition A is also a symmetric circulant matrix. Consider now
a p.s.s. case QAP (A,B) for which the identity is an optimal solution. Since matrix A has
a circular structure, the identity is still an optimal solution of QAP (A,B(u)), where B(u) is
obtained from B by applying to it an arbitrary cyclic shift according to some permutation
σu = 〈u, u+ 1, . . . , n, 1, . . . , u− 1〉, for any 1 ≤ u ≤ n (u = 1 yields the identity permutation as
a trivial cyclic shift). In particular consider a QAP (A,B), where A is a DW-Toeplitz matrix
and B = −R̄(p,q), for some 1 ≤ p ≤ q ≤ n. This QAP is solved to optimality by the identity
permutation as stated in Theorem 3.5. But then the identity permutation is also an optimal
solution of QAP (A,−C(p,q,u)), where −C(p,q,u) is obtained from B = −R̄(p,q) by permuting it
according to σu, 1 ≤ u ≤ n. Thus we can extend the class of PS Monge matrices defined in
Section 3.2 and obtain the class of the cyclic PS Monge matrices, which is the class of matrices
obtained by first permuting −R(p,q) according to π∗ and then by permuting the resulting matrix
according to a cyclic shift σu, 1 ≤ p ≤ q ≤ n and 1 ≤ u ≤ n.

Figure 10 illustrates such cyclic PS Monge matrices.

We can define now a new combined special case of the QAP solved to optimality by the
identity permutation, namely QAP (A,B1 + B2), where A is a DW-Toeplitz matrix, and B is
a conic combination of a Kalmanson matrix and a cyclic PS monotone Monge matrix (see the
illustration in Figure 11).

i1 j1

L1i1j1k

i2 j2 i3j3

L1i2j2k L1i3j3k

Figure 10: Illustration of extremal rays which generate the cone of Circular PS Monge matrices.

4 Conic representation of specially structured matrices

4.1 Cut weights and specially structured matrices

In this section, we investigate the structure of matrices which are both Kalmanson and Robin-
son matrices. We show that any matrix in this class can be represented as a sum of a constant
matrix and a conic combination of cut matrices.

We use the alternative definition of Kalmanson matrices, see Definition 2.6. Consider
special cut matrices A(k,l) = (aij), 1 ≤ k < l ≤ n, containing one block of size (k − l + 1) with
aij = 0 for k ≤ i, j ≤ l, and all other n− k + l − 1 blocks of size 1.
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A

+

B1 B2

Figure 11: Illustration of QAP (A,B1 + B2) where A is a DW-Toeplitz matrix, B1 is a cyclic
PS monotone Monge matrix, B2 is a Kalmanson matrix.

It can be easily observed that the matrices A(k,l) fulfill the inequalities (6) and (7) and
are therefore Kalmanson matrices. Notice moreover that for any n × n cut matrix A(k,l),
1 < k < l < n, there is only one strict inequality in (6), namely

ak−1,l + ak,l+1 > akl + ak−1,l+1 ,

whereas all inequalities (7) are fulfilled with equality. Analogously, there is only one strict
inequality in (7) for the matrices A(1,k−1) and A(k,n), 2 < k < n, namely

ak−1,1 + akn < ak1 + ak−1,n ,

whereas all inequalities (6) are fulfilled with equality 4.
The following lemma shows that any Kalmanson matrix can be represented as a linear

combination of a weak sum matrix with cut matrices A(k,l) which can be computed explicitly
in terms of simple formulas involving the entries of the considered Kalmanson matrix 5. Similar
structural properties of Kalmanson matrices in terms of cuts and cut-weights have also been
studied in [2] and [15]. In both papers though the authors suggest algorithms for calculating
the cut-weights while we provide simple analytical expressions for them.

Lemma 4.1 A symmetric n × n matrix C is a Kalmanson matrix if and only if it can be
represented as a linear combination of a weak sum matrix S and cut matrices A(k,l) as follows

C = S +
n−3∑
i=1

n−1∑
j=i+2

δi+1,jA
(i+1,j) +

n−2∑
i=2

(αiA
(1,i) + βiA

(i+1,n)) . (10)

The coefficients of the linear combination, the so-called cut weights, are given as δi+1,j =
(−ci,j+1 − ci+1,j + cij + ci+1,j+1), αi = ci+1,1 − ci,1, βi = cin − ci+1,n and fulfill δi+1,j ≥ 0,
αi + βi ≥ 0.

4Notice that we refrain from using superscripts in the entries of the matrix A(k,l); this yields to a slightly
inconsistent but less incumbent notation.

50-1-matrices analogous to A(k,l) have been used by Fogel et al. [19] in a similarity context.
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Proof. It can easily be checked that any weak sum matrix, a cut matrix A(k,l), and a linear
combination αiA

(1,i) + βiA
(i+1,n) with αi + βi ≥ 0 are Kalmanson matrices, and therefore any

matrix given as in (10) is a Kalmanson matrix.
Assume now that C is a Kalmanson matrix. Let i and j, 1 ≤ i < i + 2 ≤ j < n − 1 be

two indices, such the corresponding inequality in (6) is strict, i.e. ci,j+1 + ci+1,j < cij + ci+1,j+1

holds. The involved matrix entries are printed in boldface in the illustration below, note that
all these entries lie above the main diagonal.

C =



. . .
. . . ci,p . . . ci,j−1 ci,j ci,j+1 . . .
. . . ci+1,p . . . ci+1,j−1 ci+1,j ci+1,j+1 . . .

. . .
. . . cq,p . . . cq,j−1 cq,j cq,j+1 . . .

. . .


Set δi+1,j := −ci,j+1−ci+1,j+cij+ci+1,j+1 > 0 and consider the matrix C ′ = C−δi+1,jA

(i+1,j),
represented schematically below (to simplify the illustration we use the notation δ := δi+1,j):

C ′ =



c11 − δ . . . c1,i − δ c1,i+1 − δ . . . c1j − δ c1,j+1 − δ . . . c1,n − δ
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

ci,1 − δ . . . ci,i − δ ci,i+1 − δ . . . ci,j − δ ci,j+1 − δ . . . ci,n − δ
ci+1,1 − δ . . . ci+1,i − δ ci+1,i+1 . . . ci+1,j ci+1,j+1 − δ . . . ci+1,n − δ

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .

cj,1 − δ . . . cj,i − δ cj,i+1 . . . cj,j cj,j+1 − δ . . . cj,n − δ
cj+1,1 − δ . . . cj+1,i − δ cj+1,i+1 − δ . . . cj+1,j − δ cj+1,j+1 − δ . . . cj+1,n − δ

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .

cn,1 − δ . . . cn,i − δ cn,i+1 − δ . . . cn,j − δ cn,j+1 − δ . . . cn,n − δ


Notice that in matrix C ′ = (c′ij) we have c′i,j+1+c′i+1,j = c′ij +c′i+1,j+1. Moreover the status

of the other inequalities in (6) does not change, meaning that all inequalities are still fulfilled
by matrix C ′ and only the inequalities which were strictly fulfilled by C are strictly fulfilled
by C ′. Finally it is also easy to see that C ′ fulfills inequalities (6). Hence C ′ is a Kalmanson
matrix, and we check again whether there is a pair of indices for which the corresponding
inequality in (6) is strict. If yes, we perform an analogous transformation as the one described
above by defining the corresponding δ-coefficient and subtracting from C ′ the corresponding
cut matrix multiplied by that coefficient. We repeat this process, update C ′ in every step, and
eventually obtain a Kalmanson matrix C ′ which fulfills all inequalities (6) by equality.

Assume now that there exists some inequality in (7) strictly fulfilled by the entries of C ′.
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Let i, 2 ≤ i ≤ n− 2, be an index such that ci1 + ci+1,n < ci+1,1 + cin:

C =


. . .

ci1 ci2 . . . 0 . . . ci,n−1 cin
ci+1,1 ci+1,2 . . . 0 . . . ci+1,n−1 ci+1,n

. . .


Set αi = ci+1,1 − ci,1, βi = cin − ci+1,n. Clearly αi + βi > 0 holds, due to ci1 + ci+1,n <

ci+1,1 + cin. Consider the matrix C ′ = C − αA(1,i) − β A(i+1,n) where α := αi, β := βi:

C ′ =



c1,1 − β . . . c1,i − β c1,i+1 − α− β . . . c1,n − α− β
. . .

. . .
. . .

. . .
. . .

. . .

ci,1 − β . . . ci,i − β ci,i+1 − α− β . . . ci,n − α− β
ci+1,1 − α− β . . . ci+1,i − α− β ci+1,i+1 − α . . . ci+1,n − α

. . .
. . .

. . .
. . .

. . .
. . .

cn,1 − α− β . . . cn,i − α− β cn,i+1 − α . . . cn,n − α


It can be easily checked that c′i1 + c′i+1,n = c′i+1,1 + c′in, that all inequalities (6) remain

fulfilled with equality, and that the status of the other inequalities in (7) does not change,
meaning that all these inequalities are still fulfilled by matrix C ′ and only those inequalities
among them which were strictly fulfilled by C, are strictly fulfilled by C ′. As long as there are
inequalities (7) strictly fulfilled by C ′ we apply a transformation as above on C ′ and update
C ′. So eventually we get a transformed matrix where all inequalities (6), (7) are fulfilled
with equality. Such a matrix is a weak sum matrix, as shown in Lemma 4.2 below, and this
completes the proof. �

Lemma 4.2 Let C be an n × n Kalmanson matrix for which all inequalities in (6) and (7)
are fulfilled with equality. Then C is a weak sum matrix.

Proof. We show that the entries of matrix C = (cij) can be represented as

cij = γi + γj for i, j ∈ {1, 2, . . . , n}, i < j, and some γ = (γi) ∈ Rn . (11)

First, we show how to calculate γi, i = 1, . . . , n, and then we prove that the above representation
is valid.

By solving the simple system of linear equations γ1+γ2 = c12, γ1+γ3 = c13, and γ2+γ3 = c23
we get

γ1 = (c12 + c13 − c23)/2 , γ2 = (c12 + c23 − c13)/2 , γ3 = (c13 + c23 − c12)/2 . (12)

The remaining γi, i ∈ {4, 5, . . . , n} are calculated as γi := c1i − γ1. We have now c1j = cj1 =
γ1 + γj , for j = 2, . . . , n, and c23 = c32 = γ2 + γ3.

Next we show that cij = γi+γj holds for the remaining pairs of indices (i, j), i.e. for (i, j) ∈
{1, 2, . . . , n}2, i 6= 1, i < j, and (i, j) 6= (2, 3). We consider those pairs (i, j) of indices in the
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following order (2, 4), (2, 5), . . . , (2, n), (3, n), (3, n−1), . . . , (3, 4), . . . , (4, n), . . . , (4, 5), (n−1, n).
For (2, 4) we obtain by applying (in)equality (6) and equalities (12) c24 = c23 + c14 − c13 =
γ2 + γ3 + γ1 + γ4 − γ1 − γ3 = γ2 + γ4. Observe that for each of the remaining entries cjl
there is always one of the (in)equalities (6) or (7) which involves cjl and three other entries
cik, cil, cjk which have been considered before to cjl in the above specified order. Thus for
those three entries the corresponding equalities (11) hold: cik = γi + γk, cjk = γj + γk, and
cil = γi+γl. From cik+cjl = cil+cjk and the above three equalities we get cjl = cjk+cil−cik =
γj + γk + γi + γl − γi − γk = γj + γl, and this completes the proof. �

Next we give a characterization of Kalmanson matrices which are also Robinson matrices.
This characterization involves again the special cut matrices A(k,l).

Lemma 4.3 A symmetric n × n matrix C is both a Kalmanson and a Robinson matrix if
and only if it can be represented as a conic combination of a weak constant matrix Z and cut
matrices A(k,l) as follows

C = Z +

n−3∑
i=1

n−1∑
j=i+2

δi+1,jA
(i+1,j) +

n−1∑
i=2

αiA
(1,i) +

n−2∑
i=1

βiA
(i+1,n) , (13)

where δi+1,j := (−ci,j+1 − ci+1,j + cij + ci+1,j+1), for 1 ≤ i ≤ n − 3, i + 2 ≤ j ≤ n − 1,
αi := ci+1,1 − ci,1, for 2 ≤ i ≤ n − 1, βi := cin − ci+1,n, for 1 ≤ i ≤ n − 2, and δi+1,j ≥ 0,
αi ≥ 0, βi ≥ 0.

Proof. The proof of the “if”-part of the lemma is straightforward; just observe that all matrices
in the conic combination are Kalmanson and Robinson matrices and that a conic combination
preserves the Kalmanson and Robinson properties because all of them are defined in terms of
inequalities involving the entries of the matrix.

We prove now the “only if”-part. Since C is a Kalmanson matrix it has a representation as
stated by Lemma 4.1 in (10). Observe that (10) and (13) differ on the first summand, which is
a weak sum matrix in (10) and constant matrix in (13), and on the range of summation for the
third and the fourth summand (combined in one single summand in (10)). We go through the
procedure applied in Lemma 4.1 and show the matrix C ′ resulting after each transformation
step is again a Robinson matrix. The non-negativity of the coefficients αi and βi in (10) would
then follow directly from the definition of a Robinson matrix.

Consider first a transformation of the type C ′ = C − ∆A(i+1,j), where ∆ = δi+1,j . We
claim that cip −∆ ≥ ci+1,p for all p = i+ 2, . . . , j. Let Λp = cip − ci+1,p, p = i+ 2, . . . , j + 1.

Since C is a Robinson matrix, we have Λp ≥ 0. Since C is a Kalmanson matrix, we have
cip + ci+1,j − ci+1,p − ci,j = Λp − Λj ≥ 0 and Λp ≥ Λj . Clearly ∆ = Λj − Λj+1 and therefore
cip−∆− ci+1,p = Λp−Λj + Λj+1 ≥ 0, which proves the claim. The claim that cq,j+1−∆ ≥ cqj
for all q = i+ 1, . . . , j − 1 can be proved in a similar way. So the new matrix C ′ is a Robinson
matrix.

Consider now a transformation of the type C ′ = C−αiA(1,i)−βiA(i+1,n), for 2 ≤ i ≤ n−2.
The Kalmanson inequalities (6) ensure that C ′ is a Robinson matrix. So, what is left to prove
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is that Z = S − αn−1A(1,n−1) − β1A(2,n) is a weak constant matrix, where S is the weak sum
matrix in the presentation (10).

Since every transformation step results in a Robinson matrix, as shown above, the weak
sum matrix S resulting after the last transformation in the proof of Lemma 4.1 is a Robinson
matrix, too. It is easily seen that a symmetric weak sum matrix S = (sij) with sij = γi + γj ,
for 1 ≤ i < j ≤ n, is a Robinson matrix, if and only if γ1 ≥ γ2 = . . . = γn−1 ≤ γn.
Indeed s1j = γ1 + γj ≤ s1,j+1 = γ1 + γj+1 implies γj ≤ γj+1 , for j ∈ {2, 3, . . . , n − 1}, and
si−1,n = γi−1 + γn ≥ si,n = γi + γn, implies γi−1 ≥ γi, for i ∈ {2, 3, . . . , n− 1}.

After the last transformation the equalities sn,1−sn−1,1 = γn−γn−1 = cn,1−cn−1,1 = αn−1
and s1,n − s2,n = γ1 − γ2 = c1,n − c2,n = β1 clearly hold. Observe finally that

S − (γn − γn−1)×A(1,n−1) − (γ1 − γ2)×A(2,n) = S − αn−1A(1,n−1) − β1A(2,n)

is a weak constant matrix (with all non-diagonal elements equal to 2γ2), which completes the
proof. �

By applying the above lemma to compute the coefficients of the conic combination for a
cut matrix (which is a Kalmanson and a Robinson matrix) we obtain

Corollary 4.4 Let C be a cut matrix with m blocks such that k of them (k ≤ m) contain more
than one element. Let the corresponding k row and column blocks I1, I2, . . . , Ik, |Ij | > 1, ∀j, of
C be given as I1 = {i1 = 1, . . . , j1}, I2 = {i2, . . . , j2}, . . . , Ik = {ik, . . . , jk}, where il ≥ jl−1+1
and il < jl, for 1 ≤ l ≤ k. Then C can be represented as C = Z+

∑l=k
l=1 A

(il,jl), where Z = (zij)
with zij = −(k − 1) for i 6= j.

4.2 Recognizing conic combinations of cut matrices in CDW normal form

As mentioned in Section 3.3 a combined p.s.s. case of the QAP arises if one of the coefficient
matrices is a conic combination of cut matrices in CDW normal form and the other one is a conic
combination of a symmetric anti-Monge matrix and a down-benevolent Toeplitz matrix. Thus,
given a matrix C which is both a Kalmanson matrix and a Robinson matrix, it is a question
of interest whether the matrix can be represented as a conic combination of cut matrices in
CDW normal form. Notice that every cut matrix in CDW normal form is both a Robinson and
a Kalmanson matrix but not vice versa. Notice moreover that a weakly constant matrix with
zeroes on the diagonal and constant K ∈ R elsewhere can be obtained by multiplying with K
a special cut matrix in CDW normal form with all blocks of length one. In order to formulate
a simple rule for recognizing this special subclass of Kalmanson (and Robinson) matrices, we
will associate to every (Kalmanson and Robinson) matrix C an n × n symmetric cut-weight
matrix D(C) = (dij) with dij := δij = ci−1,j + ci,j+1 − cij − ci−1,j+1 for 2 ≤ i < j ≤ n− 1, and
d1i := αi = ci+1,1 − ci1, i = 2, . . . , n − 1, din := βi−1 = ci−1,n − cin, i = 2, . . . , n − 1. Observe
that the coefficients δij , αi and βi−1 are as defined in Lemma 4.3. The elements which are not
defined are irrelevant for further considerations, and are set to be zeros.

Consider a cut matrix in CDW normal form. Let Il = {il, . . . , jl}, 1 ≤ l ≤ k, be its k blocks
with more than one element, involved in the representation described in Corollary 4.4. These
blocks have the following properties: 2 ≤ |I1| ≤ |I2| ≤ . . . ≤ |Ik|, ∪l=kl=1Il = {i1, i1 + 1, . . . , n}
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and il = jl−1 + 1, for 2 ≤ l ≤ k. Clearly, the corresponding cut-weight matrix contains only k
non-zero elements dil,jl = 1, 1 ≤ l ≤ k, exactly one for each block.

Next we will represent an n×n cut matrix in CDW normal form by a directed graph with
n+ 1 nodes on a line, and edges determined in terms of the cut-weight matrix, as follows. Let
the nodes be labeled by {1, 2, . . . , n+1}, increasing from the left to the right. For each non-zero
entry di1,j1 = 1, 1 ≤ l ≤ k, of the cut-weight matrix we introduce an edge that connects nodes
i1 and j1 + 1 and is directed from i1 to j1 + 1, hence from the left to the right; see Figure 12
for an illustration. Let k be the vertex with the smallest index having a positive degree. Then
the degree of k equals 1, i.e. deg(k) = 1 and every node i ∈ {k + 1, . . . , n} has degree 0 or 2,
whereas the degree of node n + 1 equals 1. Furthermore notice that for every directed edge
(i, k) in this graph i + 1 < k holds. For such an edge we will say that it enters node k and
leaves node i. Finally notice that if there is an edge entering a node k ≤ n− 1, then the edge
leaving node k is at least as long as the edge entering k, where the length of an edge (i, k) is
given as k − i, for i + 1 < k. A directed graph with all these properties is called a multi-cut
graph and is formally defined as follows.

Definition 4.5 A directed graph G = (V,E) with node set V = {1, 2, . . . , n+ 1} and edge set
E = {(ip, ip+1) : 1 ≤ p ≤ |E|}, where all edges are directed from the node with the smaller index
to the node with larger index, with the following properties

(a) Let i1 := k be the vertex with the smallest index such that deg(k) > 0. Then deg(k) = 1,
deg(v) ∈ {0, 2}, for v ∈ {k + 1, k + 2, . . . , n} and deg(n + 1) = 1, where deg(v) denotes
the degree of v in G.

(b) The length of every edge (ip, ip+1) ∈ E is not smaller than 2, i.e. ip+1 − ip ≥ 2, for all
1 ≤ p ≤ |E|.

(c) The inequalities ip+1 − ip ≤ ip+2 − ip+i hold for all 1 ≤ p ≤ |E| − 1.

is called a cut-weight graph.

It is straightforward to see that the symmetric matrix D = (dij) constructed in relationship
with an arbitrary cut-weight graph G by setting its entries dip,ip+1 = 1 for any edge index p,
1 ≤ p ≤ |E| and dij = 0 otherwise, for all i < j, is the cut-vertex matrix D(C) =: D of an n×n
block matrix C in CDW normal form. C has k − 1 + |E| blocks which are given as Ij = {j},
for j < k = i1, and Ik−1+p = {ip, ip + 1, . . . , ip+1 − 1}, for 1 ≤ p ≤ |E|.

So to every block matrix in CDW normal form a cut-weight graph can be associated, and
vice versa, to every cut-weight graph a block matrix in CDW normal form can be associated,
as above.

Consider now a conic combination A =
∑q

p=1 αpAp of (Kalmanson and Robinson) matrices
Ap, for 1 ≤ p ≤ q. Clearly the cut-weight matrix of the linear (conic) combination can be
obtained as a conic combination of the cut-weight matrices of the summands, i.e. D(A) =∑q

p=1 αpD(Ap). If Ap are block matrices in CDW normal form and αp ∈ N, for all 1 ≤ p ≤ q,
then the entries of D(A) are natural numbers and A can be represented as a directed multigraph
with n + 1 nodes on a line with edges determined in terms of the cut-weight matrix D(A).
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More precisely for every two nodes i and k + 1, 1 ≤ i ≤ n− 2 and i+ 2 ≤ k + 1 ≤ n+ 1, the

number of directed edges (i, k + 1) equals
∑q

p=1 αpd
(p)
i,k where d

(p)
i,k is the corresponding entry

of D(Ap), for 1 ≤ p ≤ q. Consequently for each edge of length x entering a node k, there is
one edge of length at least x leaving node k. Let us denote by E−(k + 1, x) and E+(k + 1, x)
the number of edges of length at least x entering or leaving the node k + 1, respectively.
Then, clearly the number of edges of length at least x entering node k+ 1 does not exceed the
number of edges of length at least x leaving node k + 1, thus E−(k + 1, x) ≤ E+(k + 1, x),
holds for 3 ≤ k + 1 ≤ n − 1, 2 ≤ x ≤ k. By considering that E−(k + 1, x) =

∑k+1−x
i=1 dik and

E+(k + 1, x) =
∑n

j=k+1+x−1 dk+1,j , we get:

k+1−x∑
i=1

dik ≤
n∑

j=k+1+x−1
dk+1,j , for 2 ≤ k + 1 ≤ n− 2 and 2 ≤ x ≤ k. (14)

Notice that by setting l := k + 1− x inequalities (14) can be equivalently written as

l∑
i=1

dik ≤
n∑

j=2k+1−l
dk+1,j (15)

for k = 2, . . . , n − 2 and l = 1, . . . , k − 1. The right-hand sum in (15) is considered to be
zero if 2k + 1 − l > n. This in particular means that dik = 0 for k = dn/2e, . . . , n − 1 and
i = 1, . . . , 2k − n.

It turns out that the later inequalities fulfilled by the entries of the cut-weight matrix
D := D(A) of some matrix A are not only necessary, but also sufficient for A to be a conic
combination of cut matrices in CDW normal form, i.e. for A to be representable as A =∑q

p=1 αpAp, with cut matrices Ap, 1 ≤ p ≤ q, in CDW normal form.

1 2 3 4 5 6 7 8 9 10 11 12 13

Figure 12: Illustration of the graph representation of a 12 × 12 cut matrix in CDW normal
form with the blocks {2, 3}, {4, 5}, {6, 7, 8}, and {9, 10, 11, 12}. All edges are directed from
left to right.

Theorem 4.6 A symmetric n×n Kalmanson matrix C which is also a Robinson matrix with
cut-weight matrix D(C) = (dij) can be represented as the sum of a weak constant matrix and
a conic combination of cut matrices in CDW normal form if and only if inequalities (15) hold
for k = 2, . . . , n− 2 and l = 1, . . . , k − 1.
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Proof. The proof of the necessary condition is trivial. Let A =
∑q

p=1 αpAp be an n × n
matrix which is a conic combination of n×n cut matrices Ap in CDW normal form, 1 ≤ p ≤ q.
Let D(A) = (dij) be the cut-weight matrix of A. Assume for simplicity (and without loss
of generality) that the weight coefficients αp, 1 ≤ p ≤ q, are natural numbers. Then, since
D(A) =

∑q
p=1 αpD(Ap), the entries dlk, 1 ≤ l, k ≤ n, of D(A) are also natural numbers.

Inequalities (14), and consequently also inequalities (15), are obviously fulfilled due to the
construction of the directed multigraph corresponding to A.

Assume now that the entries of the cut-matrix D(C) of an integer Kalmanson and symmet-
ric matrix C satisfy the inequalities (15). Similarly as in the discussion preceding the theorem
we build an auxiliary directed multigraph with n + 1 nodes {1, 2, . . . , n + 1} and dij edges
directed from i to node j + 1 for each dij > 0 and j > i. We refer to this multigraph as the
cut-weight multigraph of matrix C.

We build a conic representation of C as follows. We start with node n + 1 in the cut-
weight multigraph, and build a path from the right to the left by choosing in the first step
an (reversed) edge (ik−1, ik = n + 1) with the largest length. Then in each following step
p > 1 we construct a longest edge (ik−p, ik−p+1) with length ik−p+1 − ik−p ≤ ik−p+2 − ik−p+1,
as long as such an edge exists. Let the constructed path be P1 := (i1, i2, . . . , ik = n + 1)
where 1 ≤ i1 < i2 < . . . < ik = n + 1. Consider now the graph G = (V,E) with vertex
set V = {1, 2, . . . , n + 1} and edge set E = {(ip, ip+1) : 1 ≤ p ≤ k − 1}. This is clearly
a cut-weight graph and hence it can be associated to a cut matrix in CDW normal form
as described before the theorem. We denote this matrix by A1. Let α1 be the minimum
multiplicity of the edges in path P1. We remove α1 copies of P1 from the cut-weight multigraph
of C and set dip,ip+1−1 := dip,ip+1−1 − αi, for 1 ≤ p ≤ k − 1. We show that (14), and
equivalently also (15), remain fulfilled after this update. The update of the coefficients dij can
only affect inequality (15) for indices k such that k + 1 is an endpoint of an edge in P1, i.e.
k + 1 ∈ {i1, i2, . . . , ik−1}. For k + 1 ∈ {i2, . . . , ik−1} the update of dij results in subtracting
αi from both sides of (15), and hence it does not affect the validity of the inequality. It
remains the case k + 1 = i1 for i1 > 2. Let Ē−(i1, x), Ē+(i1, x) be the values of E−(i1, x)
and E+(i1, x), after the update of the coefficients dij , respectively. Thus we have to show
that Ē−(i1, x) ≤ Ē+(i1, x) holds. Let l1 := i2 − i1 be the length of the first edge in P1. If
x > l1 than Ē+(i1, x) = E+(i1, x) and Ē−(i1, x) = E−(i1, x), and since E−(i1, x) ≤ E+(i1, x)
holds, there is nothing to show in this case. If x ≤ l1, Ē

+(i1, x) = E+(i1, x) − α1 and
Ē−(i1, x) = E−(i1, x). Notice that E−(i1, x) = E−(i1, x + 1), otherwise P1 could have been
prolonged beyond i1. Moreover, E−(i1, x + 1) ≤ E+(i1, x + 1) due to the assumption of
the theorem, and E+(i1, x + 1) ≤ E+(i1, x) − α1 = Ē+(i1, x) because there are at least
α1 edges of length x leaving i1. By putting things together we get the required inequality
Ē−(i1, x) ≤ Ē+(i1, x).

The path construction and the corresponding update of the coefficient dij can be then
inductively repeated as long as possible, while (15) remains an invariant during this process
and in every step i, i ∈ N, a cut matrix Ai in CDW normal form is identified. Ai corresponds
to the path Pi constructed in the i-th step. If αi is the minimum multiplicity of the edges in
Pi then αiPi is a summand of the required conic combination. This process is finite because
in every step at least one edge is removed from the original cut-edge multigraph. The process
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terminates when there are no edges entering node n + 1 any more, say after t steps. We
claim that after the t-th step, there are no more edges in the cut-weight multigraph at all.
This means that the actual coefficients dij fulfill dij = 0 for all i < j, which implies that the
matrix C is transformed into a weak constant matrix Z by subtracting

∑t
p=1 αpAp, and thus

C = Z +
∑t

p=1 αpAp holds for the original matrix C.
Now let us prove the claim. Assume by contradiction that after t transformation steps

there is no edge entering node n + 1 in the cut-weight multigraph while there is still at least
one edge in the graph. Let j be the largest node index such that there is an edge entering j.
Then j ≤ n according to our assumption. The inequalities (15) have to be fulfilled because
they are an invariant of the transformation process. In particular, 1 ≤ E−(j, 1) ≤ E+(j, 1)
must hold. This implies the existence of an edge leaving j, and hence entering some node with
an index strictly larger than j. This contradicts the choice of j and completes the proof of the
claim. �

An illustrative example. Consider the matrix C which is in the class of Kalmanson and
Robinson matrices:

C =



0 1 2 3 3 3
1 0 2 3 3 3
2 2 0 2 3 3
3 3 2 0 2 2
3 3 3 2 0 1
3 3 3 2 1 0


We first illustrate the proofs of Lemmas 4.1 and 4.3 and show how to represent C as sum of a
conic combination of cut matrices Akl with a weak constant matrix.

Note that for matrix C there is only one strict inequality in system (6) c25 +c34 < c24 +c35,
and three strict inequalities in system (7): ci1 + ci+1,6 < ci6 + ci+1,1 with i = 2, 3, 4.

We first eliminate the strict inequality c25 + c34 < c24 + c35 by subtracting from C the
cut matrix A34 multiplied by δ34 = c24 + c35 − c25 − c34 = d24 = 1. The transformed matrix
C ′ = C −A34 is given as follows.

C ′ = C −A34 =



0 0 1 2 2 2
0 0 1 2 2 2
1 1 0 2 2 2
2 2 2 0 1 1
2 2 2 1 0 0
2 2 2 1 0 0


Next we set α2 = c′31 − c′21 = 1, β2 = c′26 − c′36 = 0, therefore in the next transformation step
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the cut matrix A12 is subtracted and we get:

C −A34 −A12 =



0 0 0 1 1 1
0 0 0 1 1 1
0 0 0 1 1 1
1 1 1 0 0 0
1 1 1 0 0 −1
1 1 1 0 −1 0


In the next step we set α3 = 1, β3 = 1, and subtract A13 + A46 from the current matrix C to
obtain

C −A34 −A12 −A13 −A46 =



0 −1 −1 −1 −1 −1
−1 0 −1 −1 −1 −1
−1 −1 0 −1 −1 −1
−1 −1 −1 0 −1 −1
−1 −1 −1 −1 0 −2
−1 −1 −1 −1 −2 0


Finally we set α4 = c′51 − c′41 = 0 and β4 = c′4,6 − c′56 = 1 and subtract A56 from the actual
matrix C to obtain a weak constant matrix

C −A34 −A12 −A13 −A46 −A56 =



0 −2 −2 −2 −2 −2
−2 0 −2 −2 −2 −2
−2 −2 0 −2 −2 −2
−2 −2 −2 0 −2 −2
−2 −2 −2 −2 0 −2
−2 −2 −2 −2 −2 0


The cut-weight matrix D(C) contains five non-zero entries corresponding to the coefficients

δ34, α2, α3, β3 and β4 above:

D(C) =



0 1 1 0 0 0
0 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 1
0 0 0 0 0 1
0 0 0 0 0 0


The corresponding cut-weight multigraph is depicted in Figure 13. It can be easily seen that
the entries of D(C) fulfill the inequalities 15 and hence C can be represented as the sum of
weak constant matrix with a conic combination of block matrices in CDW normal form. The
block matrices A1 and A2 in CDW normal form correspond to the paths P1 = (1, 4, 7) and
P2 = (1, 3, 5, 7) and hence, A1 has two blocks {1, 2, 3} and {4, 5, 6}, and A2 has three blocks
{1, 2}, {3, 4}, and {5, 6}.
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1 2 3 4 5 6 7

Figure 13: Cut weight multigraph for the illustrative example

5 Conclusions

Summary of results. In this paper we introduced two new polynomially solvable special
(p.s.s.) cases of the QAP. We call the first one the down-benevolent QAP; this is a QAP (A,B)
where A is both a Kalmanson and a Robinson matrix and B is a down-benevolent Toeplitz
matrix, and it is solved to optimality by the identity permutation. This new p.s.s. case is
related to two other p.s.s. cases of the QAP known in the literature: (a) QAP (A,B) with A
being a Kalmanson matrix and B being a DW Toeplitz matrix [18], and (b) QAP (A,B) with
A being a Robinson matrix and B being a simple Toeplitz matrix [27]. In the new p.s.s. case
matrix A is more special and matrix B is more general than in the previous two p.s.s. cases.

We call the second new p.s.s. case the up-benevolent QAP; this is a QAP(A,B) where A
is a PS anti-Monge matrix and B is an up-benevolent Toeplitz matrix, and it is solved to
optimality by the identity permutation. This new p.s.s. case is a generalization of another
p.s.s. case of the QAP known in the literature, namely QAP (A,B) where A is a symmetric
monotone anti-Monge matrix and B is an up-benevolent Toeplitz matrix [5].

Further we introduce a new class of specially structured matrices. A matrix belongs to this
class iff it can be represented as the sum of a weakly constant matrix and a conic combination
of cut matrices in CDW normal form. The matrices of this class build a strict subclass of
matrices which are both Robinson and Kalmanson matrices. It follows from a result in [11]
that QAP (A,B) is solved to optimality by the identity permutation if A belongs to the newly
introduced class of matrices and B is a symmetric monotone anti-Monge matrix .

The new class of matrices and the down-benevolent QAP lead to another new p.s.s. case of
the QAP: the combined p.s.s. case QAP (A,B) where A is a conic combination of cut matrices
in CDW normal form and B is a conic combination of a monotone anti-Monge matrix and a
down-benevolent Toeplitz matrix, is solved to optimality by the identity permutation.

The combined p.s.s. case mentioned above gives rise to an interesting and non-trivial ques-
tion related to the recognition of conic combination of cut matrices in CDW normal form:
Given an n × n matrix A, n ∈ N, decide whether A can be represented as the sum of a weak
constant matrix and a conic combination of cut matrices in CDW normal form. We show
that this decision problem can be solved efficiently by computing O(n2) numbers which we call
cut-weights, and checking whether the cut-weights fulfill O(n2) linear inequalities.

Notice that both the monotone anti-Monge matrices and the down-benevolent Toeplitz
matrices are defined in terms of linear inequalities. Therefore simple linear programming
techniques can be used to recognize whether a given symmetric matrix B can be repre-
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sented/approximated as a conic combination of two matrices B1 and B2 where B1 is a monotone
anti-Monge matrix and B2 is a down-benevolent Toeplitz matrices. Thus for a given instance
of QAP it can be efficiently checked whether it is an instance of the new combined special case
introduced in this paper.

Questions for future research. A general and challenging question to be considered for
future research is the recognition of the permuted combined p.s.s. case formulated as follows.
For a given instance QAP (A,B) decide whether a) there exists a permutation φ of the rows
and the columns of A such that the matrix resulting after permuting A according to φ can
be represented as sum of a weak constant matrix and a conic combination of cut matrices in
CDW normal form, and b) there exists a permutation ψ of the rows and the columns of B such
that the matrix resulting after permuting B according to ψ can be represented as the sum of
a monotone anti-Monge matrix and a down-benevolent Toeplitz matrix.

Moreover it would be interesting to investigate whether the combined p.s.s. case of the
QAP can be used to compute good lower bounds and/or heuristic solutions for the general
problem. The idea is to “approximate” the coefficient matrices A and B of a given instance
QAP (A,B) by some matrices A′ and B′, respectively, such that QAP (A′, B′) is an instance of
the combined special case. Then, if A′ and B′ are chosen “appropriately”, the optimal solution
of QAP (A′, B′) and its optimal value could serve as a heuristic solution and/or a lower bound
for QAP (A,B), respectively. Clearly, the crucial part is to find out what “approximate” and
“appropriately” should exactly mean. This is definitely a challenging issue but it could well
lead to a new direction of research on the QAP.
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de l’Academie Royale des Sciences, Année M. DCCLXXXI, avec les Mémoires de
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A Instances used in illustrations

0 16 17 19 24 26 28 37 41 44

16 0 13 17 20 21 27 33 39 43

17 13 0 11 16 20 23 28 36 42

19 17 11 0 9 12 15 25 33 41

24 20 16 9 0 4 8 21 29 37

26 21 20 12 4 0 2 19 27 33

28 27 23 15 8 2 0 18 22 29

37 33 28 25 21 19 18 0 20 25

41 39 36 33 29 27 22 20 0 16

44 43 42 41 37 33 29 25 16 0

Figure 14: Robinson matrix visualised in Fig. 1 A

0 55 45 35 25 15 5 5 0 0

55 0 55 45 5 3 15 5 5 0

45 55 0 55 45 5 3 15 5 5

35 45 55 0 55 45 5 3 15 5

25 5 45 55 0 55 45 5 3 15

15 3 5 45 55 0 55 45 5 3

5 15 3 5 45 55 0 55 45 5

5 5 15 3 5 45 55 0 55 45

0 5 5 15 3 5 45 55 0 55

0 0 5 5 15 3 5 45 55 0

Figure 15: Simple Toeplitz matrix visualised in Fig. 1 B

35



0 7 10 10 10 10 10 10 10 10

7 0 7 9 10 10 10 10 10 10

10 7 0 2 9 10 10 10 10 10

10 9 2 0 7 8 10 10 10 10

10 10 9 7 0 1 6 9 9 9

10 10 10 8 1 0 5 8 8 8

10 10 10 10 6 5 0 3 5 5

10 10 10 10 9 8 3 0 2 2

10 10 10 10 9 8 5 2 0 0

10 10 10 10 9 8 5 2 0 0

Figure 16: Conic combination of cut matrices in CDW normal form visualised in Fig. 2 A

1 3 6 7 10 13 14 18 19 24

3 5 11 14 18 23 26 33 36 45

6 11 17 24 30 36 42 51 57 69

7 14 24 31 40 49 59 69 77 93

10 18 30 40 49 60 71 83 94 114

13 23 36 49 60 71 84 97 110 134

14 26 42 59 71 84 97 112 126 152

18 33 51 69 83 97 112 127 143 170

19 36 57 77 94 110 126 143 159 187

24 45 69 93 114 134 152 170 187 215

Figure 17: Anti-Monge monotone matrix visualised in Fig. 2 B

0 47 54 45 54 44 45 48 45 44

47 0 46 44 54 46 49 52 51 54

54 46 0 34 46 39 45 50 52 58

45 44 34 0 19 15 25 31 35 45

54 54 46 19 0 10 21 29 36 50

44 46 39 15 10 0 0 9 18 36

45 49 45 25 21 0 0 5 15 35

48 52 50 31 29 9 5 0 18 38

45 51 52 35 36 18 15 18 0 35

44 54 58 45 50 36 35 38 35 0

Figure 18: Kalmanson matrix visualised in Fig. 3 A
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0 12 10 5 3 0 3 5 10 12

12 0 12 10 5 3 0 3 5 10

10 12 0 12 10 5 3 0 3 5

5 10 12 0 12 10 5 3 0 3

3 5 10 12 0 12 10 5 3 0

0 3 5 10 12 0 12 10 5 3

3 0 3 5 10 12 0 12 10 5

5 3 0 3 5 10 12 0 12 10

10 5 3 0 3 5 10 12 0 12

12 10 5 3 0 3 5 10 12 0

Figure 19: Toeplitz matrix visualised in Fig. 3 B

0 31 36 39 43 47 48 50 53 57

31 0 21 26 31 37 40 42 47 55

36 21 0 10 17 24 30 34 42 53

39 26 10 0 1 11 21 26 36 51

43 31 17 1 0 0 11 18 31 50

47 37 24 11 0 0 0 8 23 46

48 40 30 21 11 0 0 2 18 43

50 42 34 26 18 8 2 0 17 42

53 47 42 36 31 23 18 17 0 40

57 55 53 51 50 46 43 42 40 0

Figure 20: Kalmanson and Robinson matrix visualised in Fig. 4 A

0 28 20 10 8 0 6 0 15 10

28 0 28 20 10 8 0 6 0 15

20 28 0 28 20 10 8 0 6 0

10 20 28 0 28 20 10 8 0 6

8 10 20 28 0 28 20 10 8 0

0 8 10 20 28 0 28 20 10 8

6 0 8 10 20 28 0 28 20 10

0 6 0 8 10 20 28 0 28 20

15 0 6 0 8 10 20 28 0 28

10 15 0 6 0 8 10 20 28 0

Figure 21: Down-benevolent matrix visualised in Fig. 4 B
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1 15 4 60 4 25 4 15 1 1

15 29 21 79 24 47 28 42 30 31

4 21 13 73 20 44 28 44 35 39

60 79 73 133 83 110 94 111 104 110

4 24 20 83 33 62 47 66 62 69

25 47 44 110 62 91 78 98 96 107

4 28 28 94 47 78 65 87 86 99

15 42 44 111 66 98 87 109 110 124

1 30 35 104 62 96 86 110 111 126

1 31 39 110 69 107 99 124 126 141

Figure 22: Anti-Monge matrix visualised in Fig. 5 A

0 5 13 23 25 33 27 33 18 23

5 0 5 13 23 25 33 27 33 18

13 5 0 5 13 23 25 33 27 33

23 13 5 0 5 13 23 25 33 27

25 23 13 5 0 5 13 23 25 33

33 25 23 13 5 0 5 13 23 25

27 33 25 23 13 5 0 5 13 23

33 27 33 25 23 13 5 0 5 13

18 33 27 33 25 23 13 5 0 5

23 18 33 27 33 25 23 13 5 0

Figure 23: Up-benevolent Toeplitz matrix visualised in Fig. 5 B
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