

The Alcuin number of a graph and its connections to the
vertex cover number
Citation for published version (APA):
Csorba, P., Hurkens, C. A. J., & Woeginger, G. J. (2012). The Alcuin number of a graph and its connections to
the vertex cover number. SIAM Review, 54(1), 141-154. DOI: 10.1137/110848840

DOI:
10.1137/110848840

Document status and date:
Published: 01/01/2012

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:

www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:

openaccess@tue.nl

providing details and we will investigate your claim.

Download date: 01. Jul. 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX

https://core.ac.uk/display/357266634?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1137/110848840
https://research.tue.nl/en/publications/the-alcuin-number-of-a-graph-and-its-connections-to-the-vertex-cover-number(f035c466-0c36-4509-b37c-e2c8ece33737).html

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SIAM REVIEW c© 2012 Society for Industrial and Applied Mathematics
Vol. 54, No. 1, pp. 141–154

The Alcuin Number of a Graph
and Its Connections to the
Vertex Cover Number∗

Péter Csorba†

Cor A. J. Hurkens†

Gerhard J. Woeginger†

Abstract. We consider a planning problem that generalizes Alcuin’s river crossing problem to sce-
narios with arbitrary conflict graphs. This generalization leads to the so-called Alcuin
number of the underlying conflict graph. We derive a variety of combinatorial, structural,
algorithmical, and complexity theoretical results around the Alcuin number. Our techni-
cal main result is an NP-certificate for the Alcuin number. It turns out that the Alcuin
number of a graph is closely related to the size of a minimum vertex cover in the graph,
and we unravel several surprising connections between these two graph parameters. We
provide hardness results and a fixed parameter tractability result for computing the Alcuin
number. Furthermore we demonstrate that the Alcuin number of chordal graphs, bipartite
graphs, and planar graphs is substantially easier to analyze than the Alcuin number of
general graphs.

Key words. transportation problem, scheduling and planning, graph theory, vertex cover

AMS subject classifications. 90B06, 90B35, 90C27

DOI. 10.1137/110848840

1. Introduction.

Reachability Problems. Consider an abstract discrete system that consists of a
set S of states and a transition relation R ⊆ S×S. The transition relation determines
the possible behavior of the system over time: if (s, s′) ∈ R, then the system may
move directly from state s to state s′. We say that a goal state t is reachable from
an initial state s if there exists a finite sequence s = s1, s2, . . . , sn = t of states with
(si, si+1) ∈ R for 1 ≤ i ≤ n − 1. Discrete applied mathematics is crowded with
reachability questions. Here are some examples that fit into this framework:

• When a computer program starts running on a laptop, the memory of the lap-
top traverses a number of states. In the ideal case the program will terminate
and thereby bring the laptop into the desired goal state.

• A railroad shunting yard consists of many tracks and switches. In the evening
freight trains and passenger trains arrive at the yard in a certain order (which

∗Published electronically February 8, 2012. This paper originally appeared in SIAM Journal on
Discrete Mathematics, Volume 24, Number 3, 2010, pages 757–769. This research was supported
by Netherlands Organisation for Scientific Research (NWO) grant 639.033.403, by DIAMANT (an
NWO mathematics cluster), and by BSIK grant 03018 (BRICKS: Basic Research in Informatics for
Creating the Knowledge Society).

http://www.siam.org/journals/sirev/54-1/84884.html
†Department of Mathematics and Computer Science, TU Eindhoven, P.O. Box 513, 5600 MB

Eindhoven, The Netherlands (p.csorba@tue.nl, wscor@win.tue.nl, gwoegi@win.tue.nl).

141

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

142 PÉTER CSORBA, COR A. J. HURKENS, AND GERHARD J. WOEGINGER

is schedule dependent). The trains are then decomposed and their cars are
rearranged into other trains that leave the yard in the morning. The shunting
process transforms the evening state of the yard into the morning state, and
it should do this quickly and with a small number of moves while obeying all
the restrictions arising from the local infrastructure.

• The famous 15-puzzle of Sam Loyd is a sliding puzzle that consists of a 4× 4
frame of square tiles numbered 1, . . . , 15 in random order with one tile missing.
The objective is to place the tiles in order by making sliding moves that use
the empty space.

• In manufacturing, an assembly line produces a final product by compiling
parts in a sequential manner. The process starts with an empty product and
runs through various states until the product is completed.

A fundamental problem in discrete systems is to decide whether a given goal state is
reachable from a given initial state. Some of these reachability problems are relatively
easy to solve, as they belong to the class P of polynomially solvable problems. Some
of these reachability problems are difficult and belong to the class of NP-complete
problems. And many of these reachability problems are extremely difficult and belong
to the class of PSPACE-complete problems (Papadimitriou [11]).

In this paper we will study a fairly general reachability problem from the area of
transportation planning. The considered problem looks computationally difficult at
first sight, but a closer analysis of its combinatorial structure reveals that it actually
allows short solution schedules of polynomially bounded length. Our results show
that the problem falls into the complexity class NP.

Alcuin’s River Crossing Problem. The Anglo–Saxon monk Alcuin (735–804
A.D.) was one of the leading scholars of his time. He served as head of Charlemagne’s
Palace School at Aachen, developed the Carolingian minuscule (a script which has
become the basis of the way the letters of the present Roman alphabet are written),
and wrote a number of elementary texts on arithmetic, geometry, and astronomy.
His book Propositiones ad acuendos iuvenes (“Problems to sharpen the young”) is
perhaps the oldest collection of mathematical problems written in Latin. It contains
the following well-known problem:

A man had to transport to the far side of a river a wolf, a goat, and a
bundle of cabbages. The only boat he could find was one which would
carry only himself and one of them. For that reason he sought a plan
which would enable them all to get to the far side unhurt. Let he who is
able say how it could be possible to transport them safely.

In a safe transportation plan, neither wolf and goat nor goat and cabbage can be
left alone together. Alcuin’s river crossing problem differs significantly from other
medieval puzzles, since it is neither geometrical nor arithmetical but purely combina-
torial. Biggs [3] mentions it as one of the oldest combinatorial puzzles in the history
of mathematics. Ascher [1] states that the problem also shows up in Gaelic, Dan-
ish, Russian, Ethiopian, Suaheli, and Zambian folklore. Borndörfer, Grötschel, and
Löbel [4] use Alcuin’s problem to provide the reader with a leisurely introduction into
integer programming.

Graph-Theoretic Model. We consider the following generalization of Alcuin’s
problem to arbitrary graphs G = (V,E). Now the man has to transport a set V
of items/vertices across the river. Two items are connected by an edge in E if
they are conflicting and thus cannot be left together without human supervision.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

THE ALCUIN NUMBER OF A GRAPH 143

The available boat has capacity b ≥ 1, and thus can carry the man together with
any subset of at most b items. A feasible schedule is a finite sequence of triples
(L1, B1, R1), (L2, B2, R2), . . . , (Ls, Bs, Rs) of subsets of the item set V that satis-
fies the conditions (FS1)–(FS3) below. The odd integer s is called the length of the
schedule.

(FS1) For every k, the sets Lk, Bk, Rk form a partition of V . The sets
Lk and Rk form stable sets in G. The set Bk contains at most
b elements.

(FS2) The sequence starts with L1 ∪ B1 = V and R1 = ∅, and the
sequence ends with Ls = ∅ and Bs ∪Rs = V .

(FS3) For even k ≥ 2, we have Bk∪Rk = Bk−1∪Rk−1 and Lk = Lk−1.
For odd k ≥ 3, we have Lk∪Bk = Lk−1∪Bk−1 and Rk = Rk−1.

Intuitively speaking, the kth triple encodes the kth boat trip: Lk contains the items
on the left bank, Bk the items in the boat, and Rk the items on the right bank.
Odd indices correspond to forward boat trips from left to right, and even indices
correspond to backward trips from right to left. Condition (FS1) states that the sets
Lk and Rk must not contain conflicting item pairs, and that set Bk must fit into the
boat. Condition (FS2) concerns the first boat trip (where the man has put the first
items into the boat) and the final trip (where the man transports the last items to
the right bank). Condition (FS3) says that whenever the man reaches a bank, he may
arbitrarily redivide the set of items that currently are on that bank and in the boat.

We are interested in the smallest possible capacity of a boat for which a graph
G = (V,E) possesses a feasible schedule; this capacity is called the Alcuin number
Alcuin(G) of the graph. In our graph-theoretic model Alcuin’s river crossing problem
corresponds to the path P3 with three vertices w(olf), g(oat), c(abbage) and two edges
[w, g] and [g, c]. Table 1.1 lists one possible feasible schedule for a boat of capacity
b = 1. This implies Alcuin(P3) = 1.

Table 1.1 A solution for Alcuin’s river crossing puzzle. The partitions Lk, Bk , Rk are listed as
Lk |Bk |Rk; the arrows → and ← indicate the current direction of the boat.

1. w, c | g → | ∅ 2. w, c | ← ∅ | g

3. w | c→ | g 4. w | ← g | c

5. g | w → | c 6. g | ← ∅ | w, c

7. ∅ | g → | w, c

A natural problem variant puts a hard constraint on the length of the schedule:
Let t ≥ 1 be an odd integer. The smallest possible capacity of a boat for which G
possesses a feasible schedule with at most t boat trips is called the t-trip constrained
Alcuin numberAlcuint(G). Of course,Alcuin1(G) = |V | holds for any graphG. For
our example in Table 1.1, it can be seen that Alcuin1(P3) = 3, that Alcuint(P3) = 2
for t ∈ {3, 5}, and that Alcuint(P3) = 1 for t ≥ 7.

Known Results. The idea of generalizing Alcuin’s problem to arbitrary conflict
graphs goes back (at least) to Prisner [12] and Bahls [2]: Prisner introduced it in
2002 in his course on discrete mathematics at the University of Maryland, and Bahls
discussed it in 2005 in a talk during the mathematics seminar at the University of
North Carolina.

Bahls [2] (and later Lampis and Mitsou [8]) observed that it is NP-hard to com-
pute the Alcuin number exactly; Lampis and Mitsou [8] also showed that the Alcuin

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

144 PÉTER CSORBA, COR A. J. HURKENS, AND GERHARD J. WOEGINGER

number is hard to approximate. These negative results follow quite easily from the
close relationship between the Alcuin number and the vertex cover number; see Ob-
servation 2.1. The papers [2, 8] provide a complete analysis of the Alcuin number
of trees. Finally, Lampis and Mitsou [8] proved that the computation of the trip
constrained Alcuin number Alcuin3(G) is NP-hard.

New Results. We derive a variety of combinatorial and algorithmical results
around the Alcuin number of a graph. As a by-product, our results settle several
open questions from [8] and also raise a number of new open problems.

Our main result is a structural characterization of the Alcuin number (as pre-
sented in section 3). This characterization yields an NP-certificate for the Alcuin
number. We also derive that every feasible schedule (possibly of exponential length)
can be transformed into a feasible schedule of (linear) length at most 2|V | + 1, and
that this bound 2|V |+ 1 is the strongest possible bound.

Computing the Alcuin number of a graph is NP-hard. Several proofs for this
result are already in the literature [2, 8]. We provide a new proof for this (section 6),
and we firmly believe that our three-line argument is considerably simpler than all
previously published arguments. Section 6 also shows that computing the t-trip con-
strained Alcuin number Alcuint(G) is NP-hard for every fixed value t ≥ 3; in fact,
this problem is NP-hard even for planar graphs. Furthermore we establish that ap-
proximating the Alcuin number is exactly as hard as approximating the vertex cover
number. On the positive side we show that the Alcuin number of a bipartite graph
can be determined in polynomial time (section 7.2). Standard techniques yield that
computing the Alcuin number belongs to the class FPT of fixed-parameter tractable
problems (section 5).

The close relationship between the Alcuin number and the vertex cover number
of a graph (see Observation 2.1) naturally divides graphs into so-called small-boat and
large-boat graphs: A graph is small-boat if its Alcuin number and vertex cover number
coincide, and otherwise it is large-boat. We derive a number of combinatorial lemmas
around the division line between these two classes (section 4); all of these lemmas
fall out quite easily from our structural characterization theorem. Furthermore we
establish the NP-hardness of distinguishing small-boat graphs from large-boat graphs
(section 6). This general hardness result does not carry over to the more restricted
classes of chordal graphs, bipartite graphs, and planar graphs (section 7) for which
we give concise descriptions of the division line between small-boat and large-boat
graphs. Although it is NP-hard to compute the Alcuin number and the vertex cover
number of a planar graph, one can determine in polynomial time whether these two
numbers are equal.

2. Definitions and Preliminaries. We first recall some basic definitions. A set
S ⊆ V is a stable set for a graph G = (V,E) if S does not induce any edges. The
stability number α(G) of G is the size of a largest stable set in G. A set W ⊆ V is
a vertex cover for G if V − W is stable. The vertex cover number τ(G) of G is the
size of a smallest vertex cover for G. We denote the set of neighbors of a vertex set
V ′ ⊆ V by Γ(V ′).

The Alcuin number of a graph is closely related to its vertex cover number.
Observation 2.1 (Prisner [12]; Bahls [2]; Lampis and Mitsou [8]). Every graph

G satisfies τ(G) ≤ Alcuin(G) ≤ τ(G) + 1.
Indeed during the first boat trip of any feasible schedule, the man leaves a stable

set L1 on the left bank and transports a vertex cover B1 with the boat. This implies
b ≥ τ(G). And it is straightforward to find a schedule for a boat of capacity τ(G)+1:

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

THE ALCUIN NUMBER OF A GRAPH 145

The man permanently keeps a smallest vertex cover W ⊆ V in the boat and uses the
remaining empty spot to transport the items in V −W one by one to the other bank.

The following observation follows from the inherent symmetry in conditions (FS1)–
(FS3).

Observation 2.2. If (L1, B1, R1), . . . , (Ls, Bs, Rs) is a feasible schedule for a
graph G and a boat of capacity b, then (Rs, Bs, Ls), (Rs−1, Bs−1, Ls−1), . . . , (R1, B1, L1)
is also a feasible schedule.

3. A Concise Characterization. The definition of a feasible schedule does not a
priori imply that the decision problem “Given a graph G and a bound A, is Alcuin(G)
≤ A?” is contained in the class NP: Since the length s of the schedule need not be
polynomially bounded in the size of the graph G, this definition does not give us any
obvious NP-certificate. The following theorem yields such an NP-certificate.

Theorem 3.1 (structure theorem). A graph G = (V,E) possesses a feasible
schedule for a boat of capacity b ≥ 1 if and only if there exist five subsets X1, X2, X3,
Y1, Y2 of V that satisfy the following four conditions:

(i) The three sets X1, X2, X3 are pairwise disjoint. Their union X := X1∪X2∪
X3 forms a stable set in G.

(ii) The (not necessarily disjoint) sets Y1, Y2 are nonempty subsets of the set
Y := V −X, which satisfies |Y | ≤ b.

(iii) X1 ∪ Y1 and X2 ∪ Y2 are stable sets in G.
(iv) |Y1|+ |Y2| ≥ |X3|.

If these four conditions are satisfied, then there exists a feasible schedule of length at
most 2|V |+ 1. This bound 2|V |+ 1 is the best possible (for |V | ≥ 3).

As an illustration for Theorem 3.1, we once again consider Alcuin’s problem
with b = 1; see Table 1.1. The corresponding sets in conditions (i)–(iv) then are
X1 = X2 = ∅, X3 = {w, c}, and Y1 = Y2 = {g}. The rest of this section is dedicated
to the proof of Theorem 3.1.

For the only if part, we consider a feasible schedule (Lk, Bk, Rk) with 1 ≤ k ≤ s.
Without loss of generality we assume that Bk+1 = Bk for 1 ≤ k ≤ s − 1. Obser-
vation 2.1 yields that there exists a vertex cover Y ⊆ V with |Y | = b (which is not
necessarily a vertex cover of minimum size). Then the set X = V − Y is stable. We
branch into three cases.

In the first case, there exists an index k for which Lk ∩ Y = ∅ and Rk ∩ Y = ∅.
We set Y1 = Lk∩Y , X1 = Lk∩X , and Y2 = Rk∩Y , X2 = Rk∩X , and X3 = Bk∩X ;
note that Y1 and Y2 are disjoint. This construction yields X = X1 ∪ X2 ∪ X3 and
obviously satisfies conditions (i), (ii), (iii). Since

|Y | = b ≥ |Bk ∩X |+ |Bk ∩ Y | = |X3|+ (|Y | − |Y1| − |Y2|),
we also derive the inequality |Y1|+ |Y2| ≥ |X3| for condition (iv).

In the second case, there exists an index k with 1 < k < s such that Bk = Y . If
index k is odd (and the boat is moving forward), our assumption Bk−1 = Bk = Bk+1

implies that Lk−1 ∩ Y = ∅ and Rk+1 ∩ Y = ∅. Furthermore, every element of X
is contained either in Lk−1 ∪ Bk−1 or in Rk+1 ∪ Bk+1 (but not in both sets). We
set Y1 = Lk−1 ∩ Y , X1 = Lk−1 ∩ X , and Y2 = Rk+1 ∩ Y , X2 = Rk+1 ∩ X , and
X3 = (Bk−1 ∪Bk+1) ∩X . Then X1, X2, X3 are pairwise disjoint, and conditions (i),
(ii), (iii) are satisfied. Furthermore,

|Y | = b ≥ |Bk−1 ∩X |+ |Bk−1 ∩ Y | = |Bk−1 ∩X |+ (|Y | − |Y1|)
implies |Bk−1∩X | ≤ |Y1|, and a symmetric argument yields |Bk+1∩X | ≤ |Y2|. These

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

146 PÉTER CSORBA, COR A. J. HURKENS, AND GERHARD J. WOEGINGER

two inequalities together imply |Y1| + |Y2| ≥ |X3| for condition (iv). If the index k
is even (and the boat is moving back), we proceed in a similar way with the roles of
k − 1 and k + 1 exchanged.

The third case covers all remaining situations: All k satisfy Lk ∩ Y = ∅ or
Rk ∩ Y = ∅, and all k with 1 < k < s satisfy Bk = Y . We consider two subcases. In
subcase (a) we assume Rs ∩Y = ∅. We define Y1 = Rs ∩Y and X1 = Rs ∩X , and we
set Y2 = Y1, X2 = ∅, and X3 = Bs ∩ X . Then conditions (i), (ii), (iii) are satisfied.
Since

|Y | = b ≥ |Bs ∩X |+ |Bs ∩ Y | = |X3|+ (|Y | − |Y1|),

condition (iv) also holds. In subcase (b) we assume Rs ∩ Y = ∅. We apply Observa-
tion 2.2 to get a symmetric feasible schedule with L1 ∩Y = ∅. We prove by induction
that this new schedule satisfies Rk ∩ Y = ∅ for all k ≥ 2. First, L1 ∩ Y = ∅ implies
Y ⊆ B1, and then B2 = B1 implies R2 ∩ Y = ∅. In the induction step for k ≥ 3 we
have Rk−1 ∩ Y = ∅, and hence Lk−1 ∩ Y = ∅. If k is odd, then Rk = Rk−1 and we
are done. If k is even, then Rk ∩ Y = ∅ would imply Bk = Y , a contradiction. This
completes the inductive argument. Since the new schedule has Rs ∩ Y = ∅, we may
proceed as in subcase (a). This completes the proof of the only if part.

For the if part, we construct a schedule that goes through several phases. We use
the notation L | B | R to denote a snapshot situation with item set L on the left
bank, set B on the boat, and set R on the right bank.

(1) By condition (ii), the boat can carry set Y . We leave X on the left bank, put
Y into the boat, drop off Y1 on the right bank, and return to the left bank.
This yields situation X | Y − Y1 | Y1.

(2) The boat now has at least |Y1| ≥ 1 empty places. We cut X1 into packages
of size at most |Y1|, which we take to the right bank. Eventually this yields
X2, X3 | Y − Y1 | X1, Y1.

(3) Condition (iv) allows us to split X3 into two disjoint subsets X31 and X32

with |X31| ≤ |Y1| and |X32| ≤ |Y2|. Starting from the left bank, we make four
trips:

X2, X32 | Y − Y1, X31 | X1, Y1, X2, X32 | Y | X1, X31,

X2, Y2 | Y − Y2, X32 | X1, X31, X2, Y2 | Y − Y2 | X1, X3.

(4) The boat now has at least |Y2| ≥ 1 empty places, which we use to transport
X2 to the right bank. Eventually this yields Y2 | Y − Y2 | X .

(5) In the last trip, we pick up Y2 from the left bank and reach ∅ | Y | X .
Conditions (i)–(iv) guarantee that the resulting schedule indeed is feasible.

What about the length of this schedule? In phase (1), (2), (3), (4), and (5) we,
respectively, make 2, 2�|X1|/|Y1|�, 4, 2�|X2|/|Y2|�, and 1 boat trips. Since |Y1|, |Y2| ≥
1 and since |V | ≥ |X1| + |X2| + |X3| + 1, this yields a total number of at most
2|V | − 2|X3|+ 5 trips.

• If |X3| ≥ 2, then this bound is less than or equal to 2|V |+ 1.
• If |X3| = 1, then we change the last backward trip in phase (2) to X2, X3 |

Y | X1 and replace phase (3) by the following:

X2, Y2 | Y − Y2, X3 | X1 and X2, Y2 | Y − Y2 | X1, X3.

Since this saves us two trips, the schedule length is at most 2|V |+ 1.
• If |X3| = 0, then we change the last backward trip in phase (2) to X2 | Y |

X1, remove phase (3) altogether, and in the first forward trip of phase (4)

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

THE ALCUIN NUMBER OF A GRAPH 147

leave Y2 on the left bank. Since this saves us four trips, the schedule length
again is bounded by 2|V |+ 1.

Summarizing, in all cases we have found a schedule of length at most 2|V |+ 1. This
bound 2|V |+1 is the best possible, since it can be shown that for the following graph
(V,E) and for a boat of capacity 1, all feasible schedules have length at least 2|V |+1:
The vertex set V consists of vertices v1, . . . , vn, and the edge set E consists of two
edges [v1, v2] and [v2, v3]. (A closer analysis reveals that these are actually the only
graphs for which all feasible schedules have length at least 2|V |+ 1.) This completes
the proof of the structure theorem, Theorem 3.1.

4. Small Boats versus Large Boats. By Observation 2.1 every graph G has
either Alcuin(G) = τ(G) or Alcuin(G) = τ(G) + 1. In the former case we call G a
small-boat graph, and in the latter case we call G a large-boat graph. Note that for a
small-boat graph G with b = τ(G), the stable set X in Theorem 3.1 is a maximum-size
stable set, and set Y is a minimum-size vertex cover.

The following three lemmas provide tools for recognizing small-boat graphs.
Lemma 4.1. Let G = (V,E) be a graph, and let set C ⊆ V induce a subgraph

of G with stability number at most 2. If the graph G − C has at least two nontrivial
connected components, then G is a small-boat graph.

Proof. Let V1 ⊆ V denote the vertex set of a nontrivial connected component of
G − C, and let V2 = V − (V1 ∪ C) be the vertex set of all other components. Let X
be a stable set of maximum size in G.

We set X1 = V1∩X , X2 = V2∩X , and X3 = C ∩X ; note that X1∪X2∪X3 = X
and |X3| ≤ 2. Since V1 and V2 both induce edges, V1 −X and V2 −X are nonempty.
We put a single vertex from V2 −X into Y1, and a single vertex from V1 −X into Y2.
This satisfies all conditions of the structure theorem, Theorem 3.1.

Lemma 4.2. Let G = (V,E) be a graph with a minimum vertex cover Y and a
maximum stable set X = V − Y . If Y contains two (not necessarily distinct) vertices
u and v that have at most two common neighbors in X, then G is a small-boat graph.

Proof. For y ∈ Y , we let Γx(y) denote the set of neighbors of y in X . We apply
Theorem 3.1. We let X1 = X −Γx(u), X2 = Γx(u)−Γx(v), and X3 = Γx(u)∩Γx(v),
and we let Y1 = {u} and Y2 = {v}. Then |Y1| + |Y2| = 2 ≥ |X3|, and also all other
conditions in Theorem 3.1 are satisfied.

Lemma 4.3. Let G = (V,E) be a graph that has two distinct stable sets S1, S2 ⊆ V
of maximum size (or, equivalently, two distinct vertex covers of minimum size). Then
G is a small-boat graph.

Proof. We apply Theorem 3.1. We set X1 = S1 ∩ S2, X2 = ∅, and X3 = S1 − S2,
which yields X = S1, and we set Y1 = Y2 = S2−S1. Then by condition (iv) any boat
of capacity b ≥ |Y | = τ(G) allows a feasible schedule.

The following lemma allows us to generate a plethora of small-boat and large-boat
graphs.

Lemma 4.4. Let G = (V,E) be a graph with α(G) = s, let I be a stable set on
q ≥ 1 vertices that is disjoint from V , and let G′ be the graph that results from G and
I by connecting every vertex in V to every vertex in I.

Then G′ is a small-boat graph if s/2 ≤ q ≤ 2s, and a large-boat graph if q ≥ 2s+1.
Proof. First, consider the case s/2 ≤ q ≤ s − 1. If G (and hence G′) contains

two distinct maximum stable sets, then G′ is a small-boat graph by Lemma 4.3. If
G contains a unique maximum stable set S, then S is also the unique maximum
stable set in G′. We choose X1 = X2 = ∅, X3 = S, and Y1 = Y2 = I. Then
|Y1| + |Y2| = 2q ≥ s = |S|, and G′ with b = τ(G′) satisfies conditions (i)–(iv) in the
structure theorem, Theorem 3.1.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

148 PÉTER CSORBA, COR A. J. HURKENS, AND GERHARD J. WOEGINGER

In the second case, q = s, the graph G′ contains two distinct maximum stable
sets and is a small-boat graph by Lemma 4.3.

In the third case, q ≥ s + 1, the set I is the unique maximum stable set in G′,
and V is the unique minimum vertex cover in G′. Hence τ(G′) = |V |. Furthermore
let S with |S| = s denote a maximum stable set in G. We apply Theorem 3.1. If
s + 1 ≤ q ≤ 2s, we set X1 = X2 = ∅ and X3 = I, and Y1 = Y2 = S. Then Y = V ,
and |Y1| + |Y2| = 2s ≥ q = |I|. Since conditions (i)–(iv) are satisfied for G′ with
b = τ(G′), the graph G′ indeed is small-boat. If q ≥ 2s + 1 holds, we suppose for
the sake of contradiction that G′ with b = τ(G′) satisfies conditions (i)–(iv). Then
X1 ∪ X2 ∪ X3 = I by condition (i), Y1 and Y2 are nonempty by condition (ii), and
X1 ∪ Y1 and X2 ∪ Y2 are stable sets by condition (iii). Since X1 ∪ Y1 is stable, and
since every vertex in X1 ⊆ I is connected to every vertex in Y1 ⊆ V , and since Y1

is nonempty, we conclude that X1 = ∅. An analogous argument yields X2 = ∅, and
hence X3 = I. Since |Y1|+ |Y2| ≥ |X3| ≥ 2s+1 by condition (iv), we get |Y1| ≥ s+1
or |Y2| ≥ s + 1. Therefore G contains a stable set on at least s + 1 vertices, which
contradicts α(G) = s.

Corollary 4.5 below follows from Lemma 4.4. It also illustrates that the statement
of Lemma 4.4 cannot be extended in any meaningful way to the cases with 1 ≤ q < s/2:
If we join the graph G = Ks,s with stability number s to a stable set I on q vertices,
then the resulting tripartite graph Kq,s,s is a small-boat graph. On the other hand,
if we join the graph G = Kq,s with stability number s to a stable set I on q vertices,
then the resulting tripartite graph Kq,q,s is a large-boat graph.

Corollary 4.5. Let k ≥ 2 and 1 ≤ n1 ≤ n2 ≤ · · · ≤ nk be positive integers.
Then the complete k-partite graph Kn1,...,nk

is a small-boat graph if nk ≤ 2nk−1, and
it is a large-boat graph otherwise.

The following observation is a consequence of Lemma 4.1 (with C = ∅) and the
structure theorem, Theorem 3.1. It allows us to concentrate our investigations on
connected graphs.

Observation 4.1. A disconnected graph G with k ≥ 2 connected components is
a large-boat graph if and only if k − 1 components are isolated vertices, whereas the
remaining component is a large-boat graph.

5. An Algorithmic Result. The following theorem demonstrates that determin-
ing the Alcuin number of a graph belongs to the class FPT of fixed-parameter tractable
problems.

Theorem 5.1. For a given graph G with n vertices and m edges and a given
bound A, we can decide in O(4Amn) time whether Alcuin(G) ≤ A.

Proof. Our main tool is the standard FPT search-tree algorithm for vertex cover,
which yields an O(2Bmn) solution to the question “Given a graph G with n vertices
and m edges and a bound B, is τ(G) ≤ B?”; see, for instance, Niedermeier [10]. In
fact, if the answer is positive, then the search-tree algorithm can be used to enumerate
all minimum size vertex covers in O(2Bmn) time.

We proceed as follows. We first check whether τ(G) ≤ A−1: If the answer is posi-
tive, then Observation 2.1 allows us to stop with the output YES andAlcuin(G) ≤ A.
If the answer is negative, then τ(G) ≥ A holds and we move on. We check whether
τ(G) ≤ A: If the answer is negative, then Observation 2.1 allows us to stop with NO
and Alcuin(G) ≤ A. If the answer is positive, then τ(G) = A holds and we move on.
We check whether G possesses two distinct minimum size vertex covers. If it does,
then Lemma 4.3 yields Alcuin(G) = τ(G) = A and we stop with output YES.

In the only remaining case, the graph G = (V,E) has a unique vertex cover Y
of size A = τ(G), and the set X = V − Y is the unique maximum size stable set

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

THE ALCUIN NUMBER OF A GRAPH 149

in G. This uniquely determines sets X and Y in conditions (i)–(iv) of the structure
theorem, Theorem 3.1, and it remains to find appropriate sets X1, X2, X3 and Y1, Y2.
We distinguishO(4A) subcases by considering all possibilities for two nonempty, stable
subsets Y1, Y2 ⊆ Y . It is not hard to see that X1 can be chosen as the set of all
vertices in X that are not adjacent to vertices in Y1, that X2 can be chosen as
the set of all vertices in X − X1 that are not adjacent to vertices in Y2, and that
X3 = X − (X1 ∪X2). We output YES if in any of these O(4A) subcases the sets Y1,
Y2, X3 satisfy condition (iv), and otherwise we output NO.

6. Hardness Results. The reductions in this section are from the NP-hard Ver-

tex Cover and NP-hard Stable Set problems; see Garey and Johnson [5]. Slightly
weaker versions of the statements in Observations 6.1 and 6.2, and also the restriction
of Theorem 6.2 to three boat trips, have been derived by Lampis and Mitsou [8].

The following observation implies right away that finding the Alcuin number is
NP-hard for planar graphs and for graphs of bounded degree.

Observation 6.1. Let G be a graph class that is closed under taking disjoint
unions. If the vertex cover problem is NP-hard for graphs in G, then it is NP-hard to
compute the Alcuin number for graphs in G.

Proof. For a graph G ∈ G, we consider the disjoint union G′ of two inde-
pendent copies of G. Then τ(G′) = 2 τ(G), and Observation 2.1 yields 2 τ(G) ≤
Alcuin(G′) ≤ 2 τ(G) + 1. Hence, we can deduce the vertex cover number τ(G) from
Alcuin(G′).

The approximability threshold of a minimization problem P is the infimum of all
real numbers R ≥ 1 for which problem P possesses a polynomial time approximation
algorithm with worst-case ratio R. The approximability threshold of the vertex cover
problem is known to lie somewhere between 1.36 and 2, and it is widely conjectured
to be exactly 2; see, for instance, Khot and Regev [7].

Observation 6.2. The approximability threshold of the vertex cover problem
coincides with the approximability threshold of the Alcuin number problem.

Proof. We show that an approximation algorithm with worst-case ratio R for one
of the two values implies an approximation algorithm with worst-case ratio R+ ε for
the other value, where ε > 0 can be made arbitrarily close to 0.

First, consider an approximation algorithm with worst-case ratio R for Vertex

Cover. For an input graph G we first check whether τ(G) ≤ 1/ε holds. If it holds,
then we compute the value Alcuin(G) exactly in polynomial time; see section 5. If it
does not hold, then we call the approximation algorithm for vertex cover to compute
an approximation τ ′ of τ(G), and output τ ′ + 1 as an approximation of Alcuin(G).
Then τ ′ + 1 ≥ Alcuin(G), and Observation 2.1 yields τ ′ + 1 ≤ (R + ε) · τ(G) ≤
(R+ ε) ·Alcuin(G).

Second, consider an approximation algorithm with worst-case ratio R for the
Alcuin number. For an input graph G we first check whether τ(G) ≤ R/ε holds. If
it holds, then we compute the value τ(G) exactly in polynomial time; see section 5.
If it does not hold, then we call the approximation algorithm for the Alcuin number,
and output its approximation A′ of Alcuin(G) as an approximation of τ(G). Then
A′ ≥ τ(G), and Observation 2.1 yields A′ ≤ R · Alcuin(G) ≤ R · (τ(G) + 1) ≤
(R+ ε)τ(G).

Theorem 6.1. It is NP-hard to decide whether a given graph is a small-boat
graph.

Proof. We show that if small-boat graphs can be recognized in polynomial time,
then there exists a polynomial time algorithm for computing the stability number of
a graph.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

150 PÉTER CSORBA, COR A. J. HURKENS, AND GERHARD J. WOEGINGER

Indeed, consider a graph G = (V,E) on n = |V | vertices. For q = 1, . . . , 2n+ 1,
let Iq be a stable set on q vertices that is disjoint from V , and let Gq be the graph
that results from G and Iq by connecting every vertex in V to every vertex in Iq. We
check for every q whether Gq is small-boat, and we let q

∗ denote the largest index q
for which Gq is small-boat. Lemma 4.4 yields that the stability number of G equals
q∗/2.

Since the structure theorem, Theorem 3.1, produces feasible schedules of length at
most 2|V |+1, we have Alcuint(G) = Alcuin(G) for all t ≥ 2|V |+1. Consequently,
computing the t-trip constrained Alcuin number is NP-hard if t is part of the input.
The following theorem shows that this problem is NP-hard for every fixed t ≥ 3, even
in the case in which the input graph is planar.

Theorem 6.2. Let r ≥ 1 be a fixed integer bound. Then it is NP-hard to decide
for a given planar graph and a given boat capacity whether there exists a feasible
schedule that uses only 2r + 1 boat trips.

Proof. Consider an instance of the Planar Stable Set problem: Given a planar
graph G = (V,E) and an integer bound q, does G possess a stable set of size at least
q? Let n = |V | and m = |E|, and construct the following new graph G′ = (V ′, E′):

• The vertices in G′ are the n vertices in V together with a set U of m new
vertices, and together with a set W of (m+ q)r new vertices. For every edge
e ∈ E, there is a corresponding vertex u(e) ∈ U .

• The edge set E′ contains every edge in E. Furthermore for every edge e =
[v1, v2] ∈ E, the new vertex u(e) is made adjacent to vertices v1 and v2. All
vertices in W are of degree zero.

We first establish that graph G′ satisfies the following technical statement: If S1, S2 ⊆
V ∪ U with S1 ∩ S2 = ∅ are two stable sets in G′, then |S1| + |S2| ≤ m + α(G).
Indeed, consider such a pair of disjoint stable sets S1 and S2 that maximizes the value
|S1| + |S2|, and among all such pairs consider one that maximizes the cardinality of
(S1 ∪ S2) ∩ U . Consider a vertex u(e) corresponding to some edge e = [v1, v2] ∈ E,
and note that u(e), v1, v2 form a triangle in G′. If u(e) is not in S1 ∪S2, then we may
assume v1 ∈ S1 and v2 ∈ S2. Then replacing v1 in S1 by u(e) leaves the cardinalities of
S1 and S2 unchanged, but increases the cardinality of (S1 ∪ S2) ∩U , a contradiction.
This implies U ⊆ S1 ∪ S2. Now consider an edge e = [v1, v2] ∈ E. If v1 ∈ S1,
then u(e) ∈ S2, and v2 /∈ S1 ∪ S2. Symmetrically, if v1 ∈ S2, then v2 /∈ S1 ∪ S2.
This implies that (S1 ∪ S2) ∩ V forms a stable set in G. The resulting inequality
|(S1 ∪S2)∩ V | ≤ α(G), together with |(S1 ∪S2)∩U | = m, completes the proof of the
technical statement.

Furthermore, it is easily seen that graph G being planar implies that graph G′ is
also planar. We claim that the original graph G has a stable set of size at least q if
and only if there exists a schedule with 2r+1 boat trips for G′ and a boat of capacity
b = n+m.

First, assume that G has a stable set S ⊆ V of size at least q. Partition the set
W into r + 1 disjoint sets W1, . . . ,Wr+1, such that |W1| = q, |W2| = |W3| = · · · =
|Wr| = m + q, and |Wr+1| = m. It is easily verified that the following constitutes a
feasible schedule:

(1) In the first boat trip put V − S, U , and W1 into the boat, while leaving the
stable set S ∪ (W −W1) behind. Drop U ∪W1 on the right bank, and in the
second trip return with V − S to the left bank.

(2) Use the next 2(r− 1) boat trips to transport the sets W2, . . . ,Wr to the right
bank. The set V − S remains on board all the time and blocks n− q spots.
The remaining m+ q spots leave just enough room for one set Wi per trip.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

THE ALCUIN NUMBER OF A GRAPH 151

(3) In the (2r + 1)th trip finally pick up Wr+1 and S, and take all remaining
vertices to the right bank.

Next, assume that every stable set in G has size at most q − 1. Consider an
arbitrary feasible schedule (Lk, Bk, Rk) for graph G′ and a boat of capacity b = n+m,
and denote the length of this schedule by 2s + 1. Our technical statement implies
for any k that the set Lk ∪ Rk contains at most m + q − 1 vertices from V ∪ U .
Consequently every set Bk contains at least n− q+ 1 of the n+m vertices in V ∪U ,
and at most m+ q − 1 vertices from W . Since the s+ 1 forward trips must bring all
vertices from W and also the remaining m + q − 1 vertices from V ∪ U to the right
bank, we get (s+1)(m+ q− 1) ≥ |W |+ (m+ q− 1), which implies s ≥ r+1. Hence,
there does not exist a schedule of length 2r + 1.

We remark that the reduction in Theorem 6.2 can be rewritten into an L-reduction
from the vertex cover problem to the t-trip constrained Alcuin number problem.
Therefore, for every fixed t ≥ 3 the t-trip constrained Alcuin number is APX-hard to
approximate (even in planar graphs).

7. Special Graph Classes. We now discuss the Alcuin number for several classes
of specially structured graphs, as well as how small-boat graphs can be distinguished
from large-boat graphs in these classes.

7.1. Chordal Graphs and Trees. Chordal graphs are graphs in which every cycle
of length exceeding three has a chord, that is, an edge joining two nonconsecutive
vertices in the cycle; see, for instance, Golumbic [6]. An equivalent characterization
states that a graph is chordal if and only if every minimal vertex separator induces
a clique. A split graph is a graph G = (V,E) whose vertex set can be partitioned
into an induced clique and an induced stable set; see Golumbic [6]. An equivalent
characterization states that a graph is a split graph if and only if it does not contain
C4, C5, and 2K2 (= two independent edges) as induced subgraphs. Note that split
graphs and trees are special cases of chordal graphs.

The following lemma provides a complete characterization of chordal small-boat
graphs.

Lemma 7.1. Let G = (V,E) be a connected chordal graph. Then G is a small-boat
graph if and only if one of the following two conditions holds:

(1) G is a split graph with a maximum stable set X and a clique Y = V − X,
such that there exist two (not necessarily distinct) vertices u, v in Y that have
at most two common neighbors in X.

(2) G is not a split graph.
Proof. If G is a split graph, sufficiency of the stated condition follows essentially

from Lemma 4.2. Necessity follows from the structure theorem, Theorem 3.1: Since
Y is a clique, Y1 and Y2 both consist of a single element, and hence |X3| ≤ 2. Assume
Y1 = {u} and Y2 = {v}. If u = v, then all common neighbors of u and v in X are in
X3. If u = v, then all neighbors of u in X are in X3.

If G is not a split graph, it must induce C4 or C5 or 2K2. Since G is also chordal,
it hence must contain an induced subgraph 2K2 with two independent edges [a, b] and
[c, d]. Since the vertex set V − {a, b, c, d} separates a and c, it contains a minimal
separator C that induces a clique in G. Then G− C has two nontrivial components,
and Lemma 4.1 applies.

As a special case, Lemma 7.1 contains the following classification of trees (which
has already been derived in [2, 8]). Stars K1,k with k ≥ 3 leaves are split graphs that
do not satisfy condition (1) of Lemma 7.1; therefore they are large-boat graphs (note
that this also follows from Lemma 4.4). All remaining trees T are small-boat graphs:

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

152 PÉTER CSORBA, COR A. J. HURKENS, AND GERHARD J. WOEGINGER

Either such a tree T has two independent edges (and thus is small-boat), or it is of the
following form: There are vertices a0, . . . , ak and b0, . . . , b with k, - ≥ 0, and edges
[a0, ai] for all i > 0, edges [b0, bj] for all j > 0, and the edge [a0, b0]. Then T is a split
graph with clique {a0, b0} that satisfies condition (1); hence T is small-boat.

7.2. Bipartite Graphs. It is well known that the stability number and the vertex
cover number of a bipartite graph G can be computed in polynomial time; see, for
instance, Lovász and Plummer [9]. In this section we show that also the Alcuin
number of a bipartite graph can be computed in polynomial time. As an immediate
consequence we get that bipartite small-boat graphs can be recognized in polynomial
time.

Theorem 7.2. For a bipartite graph G = (V,E), the Alcuin number can be
computed in polynomial time.

Proof. It is easy to decide whether the bipartite graph G has a unique maximum
size stable set (for instance, by finding some maximum size stable set X , and by
checking for every x ∈ X whether G − x has a stable set of cardinality |X |). If G
possesses two distinct maximum size stable sets, then Lemma 4.3 yields Alcuin(G) =
τ(G). Hence, in the light of Theorem 3.1 the only interesting situation is the following:
The graph G has a unique maximum size stable set X and a unique minimum size
vertex cover Y = V − X . Do there exist sets X1, X2, X3 and Y1, Y2 that satisfy
conditions (i)–(iv) with b = τ(G)?

We consider two copies G′ = (V ′, E′) and G′′ = (V ′′, E′′) of G, and the corre-
sponding maximum stable sets X ′ and X ′′ and minimum vertex covers Y ′ and Y ′′.
We construct a new graph H that consists of the vertices and edges in G′ and G′′

and of a perfect matching between X ′ and X ′′; for every vertex v ∈ X , the perfect
matching matches the two copies of v in X ′ and X ′′ to each other. It is easy to verify
that H is bipartite, since G is bipartite.

Suppose that G contains sets X1, X2, X3 and Y1, Y2 with the desired properties.
Let X ′

1 and Y ′
1 denote the sets corresponding to X1 and Y1 in G′, and let X ′′

2 and Y ′′
2

denote the sets corresponding to X2 and Y2 in G′′. Since X1 ∪ Y1 and X2 ∪ Y2 are
stable sets, and since X1 and X2 are disjoint, the set X

′
1 ∪ X ′′

2 ∪ Y ′
1 ∪ Y ′′

2 is a stable
set of size at least α(G) in H that has nonempty intersections with both Y ′ and Y ′′.
On the contrary, if H contains a stable set Z of size at least α(G) that has nonempty
intersections with Y ′ and Y ′′, then we may define X1 = X ′ ∩ Z, X2 = X ′′ ∩ Z,
Y1 = Y ′ ∩ Z, and Y2 = Y ′′ ∩ Z. The matching between X ′ and X ′′ ensures that X1

and X2 are disjoint, and it can be verified that these sets satisfy conditions (i)–(iv)
with b = τ(G).

So the entire problem boils down to finding a large stable set in H that has
nonempty intersections with Y ′ and Y ′′. This can easily be done by computing
maximum size stable sets in a sequence of graphs (for instance, check every possible
pair of vertices in Y ′ and Y ′′ as potential members of the stable set Z, and update
H appropriately). If we succeed in finding such a stable set of cardinality α(G), then
Alcuin(G) = τ(G); otherwise Alcuin(G) = τ(G) + 1.

7.3. Planar Graphs. Next, let us turn to planar and outer-planar graphs. Outer-
planar graphs are easy to classify: Any outer-planar graph G with τ(G) = 1 is a star,
and hence a small-boat, if and only if it has at most two leaves; see section 7.1. Any
outer-planar graph G with τ(G) ≥ 2 satisfies the conditions of Lemma 4.2 and thus
is small-boat: Two arbitrary vertices u and v in a minimum vertex cover cannot have
more than two common neighbors, since otherwise K2,3 would occur as a subgraph.
The behavior of general planar graphs is more interesting.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

THE ALCUIN NUMBER OF A GRAPH 153

Lemma 7.3. Every planar graph G = (V,E) with τ(G) ≥ 5 is a small-boat graph.
Proof. Let Y = {y1, . . . , yt} with t ≥ 5 be a vertex cover of minimum size, and let

X = V − Y denote the corresponding stable set. For y ∈ Y we denote by Γx(y) the
set of neighbors of y in X . If there exist two indices i, j with 1 ≤ i < j ≤ 5 such that
Γx(yi) ∩ Γx(yj) contains at most two vertices, then G is small-boat by Lemma 4.2.
We will show that no other case can arise.

Suppose for the sake of contradiction that for every two indices i, j with 1 ≤
i < j ≤ 5, the set Γx(yi) ∩ Γx(yj) contains at least three vertices. Then let a, b, c
be three vertices in Γx(y1) ∩ Γx(y2). In any planar embedding of G the three paths
y1 − a − y2, y1 − b − y2, y1 − c − y2 divide the plane into three regions. If two of
y3, y4, y5 were to lie in different regions, they could not have three common neighbors,
a contradiction. Thus y3, y4, y5 must all lie in the same region, say in the region
bounded by y1 − a − y2 − b − y1. Hence there is a vertex z1,2 (= vertex c) that is
adjacent to both vertices y1 and y2, but not adjacent to any of y3, y4, y5. An analogous
argument yields that for any 1 ≤ i < j ≤ 5, the two vertices yi and yj have a common
neighbor zi,j that is not adjacent to the other three vertices in {y1, y2, y3, y4, y5}.
The 15 vertices yi and zi,j form a subdivision of K5 in G, and thus yield the desired
contradiction to planarity.

The condition τ(G) ≥ 5 in Lemma 7.3 cannot be dropped, since there exists a
variety of planar graphs G with τ(G) ≤ 4 that are large-boat. Consider, for instance,
the following planar graph G: The vertex set contains four vertices y1, y2, y3, y4 and
for every i, j with 1 ≤ i < j ≤ 4 a set Vij of t ≥ 3 vertices. The edge set connects
every vertex in Vij to yi and to yj . It can be verified that G is planar, that τ(G) = 4,
and that Alcuin(G) = 5.

Lemma 7.3 implies that there is a polynomial time algorithm that decides whether
a planar graph G is small-boat or large-boat: In case G has a vertex cover of size at
most 4 we use Theorem 5.1 to decide whether Alcuin(G) = τ(G), and in the case
where G has vertex cover number at least 5 we simply answer YES.

Summarizing, this yields the following (perhaps unexpected) situation: Although
it is NP-hard to compute the Alcuin number and the vertex cover number of a planar
graph, we can determine in polynomial time whether these two values coincide.

8. Conclusions. In this paper we have derived a variety of combinatorial, struc-
tural, algorithmical, and complexity theoretical results around a graph-theoretic gen-
eralization of Alcuin’s river crossing problem.

Our investigations essentially revolved around the following three algorithmic
problems: (1) computation of the stability number; (2) computation of the Alcuin
number; (3) recognition of small-boat graphs. All three problems are polynomially
solvable if the input graph has bounded treewidth (the Alcuin number can be com-
puted along the lines of the standard dynamic programming approach).

Question 8.1. Does there exist a graph class G for which computing the stability
number is easy, whereas computing the Alcuin number is hard?

In particular, the case of perfect graphs remains open. A graph is perfect if for
every induced subgraph the clique number coincides with the chromatic number; see,
for instance, Golumbic [6].

Question 8.2. Is there a polynomial time algorithm for computing the Alcuin
number of a perfect graph?

Trees, split graphs, chordal graphs, and bipartite graphs are special cases of per-
fect graphs, and we have shown that for all of these classes the Alcuin number can be
computed in polynomial time. Also for other well-known classes of perfect graphs like

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

154 PÉTER CSORBA, COR A. J. HURKENS, AND GERHARD J. WOEGINGER

cographs or permutation graphs we can compute the Alcuin number in polynomial
time; this can be done by standard dynamic programming approaches that are similar
to the dynamic programs for computing the stability number for these classes.

Finally, the computational complexity of recognizing small-boat graphs remains
unclear.

Question 8.3. Is the problem of recognizing small-boat graphs contained in NP?
We have proved that this problem is NP-hard, but there is no reason to assume

that it lies in NP: To demonstrate that a graph is small-boat in a straightforward way,
we have to show that its Alcuin number is small (NP-certificate) and that its vertex
cover number is large (coNP-certificate). This mixture of NP- and coNP-certificates
suggests that the problem might be located in one of the complexity classes above NP
(see, for instance, Chapter 17 in Papadimitriou’s book [11]); the complexity class DP
might be a reasonable guess.

REFERENCES

[1] M. Ascher, A river-crossing problem in cross-cultural perspective, Math. Mag., 63 (1990), pp.
26–29.

[2] P. Bahls, The Wolf, the Goat, and the Cabbage: A Modern Twist on a Classical Problem,
unpublished manuscript, University of North Carolina at Asheville, Asheville, NC, 2005.

[3] N. L. Biggs, The roots of combinatorics, Historia Math., 6 (1979), pp. 109–136.
[4] R. Borndörfer, M. Grötschel, and A. Löbel, Alcuin’s transportation problems and integer

programming, in Charlemagne and His Heritage: 1200 Years of Civilization and Science in
Europe, Vol. 2, Brepols, Turnhout, 1998, pp. 379–409.

[5] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the Theory of
NP-Completeness, W. H. Freeman, San Francisco, 1979.

[6] M. C. Golumbic, Algorithmic Graph Theory and Perfect Graphs, Academic Press, New York,
1980.

[7] S. Khot and O. Regev, Vertex cover might be hard to approximate to within 2−ε, J. Comput.
System Sci., 74 (2008), pp. 335–349.

[8] M. Lampis and V. Mitsou, The ferry cover problem, in Proceedings of the 4th International
Conference on Fun with Algorithms (FUN 2007), Lecture Notes in Comput. Sci. 4475,
Springer, Berlin, 2007, pp. 227–239.

[9] L. Lovász and M. D. Plummer, Matching Theory, Ann. Discrete Math. 29, North-Holland,
Amsterdam, 1986.

[10] R. Niedermeier, Invitation to Fixed-Parameter Algorithms, Oxford University Press, New
York, 2006.

[11] C. H. Papadimitriou, Computational Complexity, Addison-Wesley, Reading, MA, 1994.
[12] E. Prisner, Generalizing the wolf-goat-cabbage problem, Electron. Notes Discrete Math., 27

(2006), p. 83.

