148 research outputs found

    Immobile Myosin-II Plays A Scaffolding Role During Cytokinesis In Budding Yeast

    Get PDF
    Core components of cytokinesis are conserved from yeast to human, but how these components are assembled into a robust machine that drives cytokinesis remains poorly understood. In this paper, we show by fluorescence recovery after photobleaching analysis that Myo1, the sole myosin-II in budding yeast, was mobile at the division site before anaphase and became immobilized shortly before cytokinesis. This immobility was independent of actin filaments or the motor domain of Myo1 but required a small region in the Myo1 tail that is thought to be involved in higher-order assembly. As expected, proteins involved in actin ring assembly (tropomyosin and formin) and membrane trafficking (myosin-V and exocyst) were dynamic during cytokinesis. Strikingly, proteins involved in septum formation (the chitin synthase Chs2) and/or its coordination with the actomyosin ring (essential light chain, IQGAP, F-BAR, etc.) displayed Myo1-dependent immobility during cytokinesis, suggesting that Myo1 plays a scaffolding role in the assembly of a cytokinesis machine

    Relativistic Elastostatics I: Bodies in Rigid Rotation

    Full text link
    We consider elastic bodies in rigid rotation, both nonrelativistically and in special relativity. Assuming a body to be in its natural state in the absence of rotation, we prove the existence of solutions to the elastic field equations for small angular velocity.Comment: 25 page

    Convergence rates in expectation for Tikhonov-type regularization of Inverse Problems with Poisson data

    Full text link
    In this paper we study a Tikhonov-type method for ill-posed nonlinear operator equations \gdag = F( ag) where \gdag is an integrable, non-negative function. We assume that data are drawn from a Poisson process with density t\gdag where t>0t>0 may be interpreted as an exposure time. Such problems occur in many photonic imaging applications including positron emission tomography, confocal fluorescence microscopy, astronomic observations, and phase retrieval problems in optics. Our approach uses a Kullback-Leibler-type data fidelity functional and allows for general convex penalty terms. We prove convergence rates of the expectation of the reconstruction error under a variational source condition as tt\to\infty both for an a priori and for a Lepski{\u\i}-type parameter choice rule

    Effect of butanol and salt concentration on solid-state nanopores resistance

    Get PDF
    The objective of this study was to demonstrate the possibility of using 1-butanol to detect in a reliable way the open pore current of pyramidal solid-state nanopores produced in silicon wafers. The nanopores were produced through controlled pore formation by neutralizing an etchant (KOH) with a strong acid (HCl). Since nanopores produced by this method have a larger depth than those made in nanometer thick membranes, they behave as nanochannels. As a consequence, the open pore current detection is more challenging. Thus, we report that low amounts of butanol considerably aid in the detection of the open pore current of nanopores.Fil: Vega, M.. Universidad Tecnológica Nacional. Facultad Regional Haedo; ArgentinaFil: Perez, Maximiliano Sebastian. Universidad Tecnológica Nacional. Facultad Regional Haedo; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Granell, Pablo Nicolás. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Golmar, Federico. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Wloka, C.. University of Groningen; Países BajosFil: Maglia, G.. University of Groningen; Países BajosFil: Dieguez, M.J.. Instituto Nacional de Tecnología Agropecuaria; ArgentinaFil: Del Valle, E.M.. Universidad de Salamanca; EspañaFil: Lasorsa, Carlos Alberto. Universidad Tecnológica Nacional. Facultad Regional Haedo; ArgentinaFil: Lerner, Betiana. Universidad Tecnológica Nacional. Facultad Regional Haedo; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentin

    Model validation for a noninvasive arterial stenosis detection problem

    Get PDF
    Copyright @ 2013 American Institute of Mathematical SciencesA current thrust in medical research is the development of a non-invasive method for detection, localization, and characterization of an arterial stenosis (a blockage or partial blockage in an artery). A method has been proposed to detect shear waves in the chest cavity which have been generated by disturbances in the blood flow resulting from a stenosis. In order to develop this methodology further, we use both one-dimensional pressure and shear wave experimental data from novel acoustic phantoms to validate corresponding viscoelastic mathematical models, which were developed in a concept paper [8] and refined herein. We estimate model parameters which give a good fit (in a sense to be precisely defined) to the experimental data, and use asymptotic error theory to provide confidence intervals for parameter estimates. Finally, since a robust error model is necessary for accurate parameter estimates and confidence analysis, we include a comparison of absolute and relative models for measurement error.The National Institute of Allergy and Infectious Diseases, the Air Force Office of Scientific Research, the Deopartment of Education and the Engineering and Physical Sciences Research Council (EPSRC)
    corecore