672 research outputs found

    Continental flood basalts do not drive later Phanerozoic extinctions

    Get PDF

    Intra- and interspecific variability in offspring size in nautilids

    Get PDF

    Geographic and temporal morphological stasis in the latest Cretaceous ammonoid Discoscaphites iris from the U.S. Gulf and Atlantic Coastal Plains

    Get PDF
    We examine temporal and spatial variation in morphology of the ammonoid cephalopod Discoscaphites iris using a large dataset from multiple localities in the Late Cretaceous (Maastrichtian) of the United States Gulf and Atlantic Coastal Plains, spanning a distance of 2000 km along the paleoshoreline. Our results suggest that the fossil record of D. iris is consistent with no within species net accumulation of phyletic evolutionary change across morphological traits or the lifetime of this species. Correlations between some traits and paleoenvironmental conditions as well as changes in the coefficient of variation may support limited population-scale ecophenotypic plasticity, however where stratigraphic data are available, no directional changes in morphology occur prior to the Cretaceous/Paleogene (K/Pg) boundary. This is consistent with models of 'dynamic' evolutionary stasis. Combined with knowledge of life history traits and paleoecology of scaphitid ammonoids, specifically a short planktonic phase after hatching followed by transition to a nektobenthic adult stage, these data suggest that scaphitids had significant potential for rapid morphological change in conjunction with limited dispersal capacity. It is therefore likely that evolutionary mode in the Scaphitidae (and potentially across the broader ammonoid clade) follows a model of cladogenesis wherein a dynamic morphological stasis is periodically interrupted by more substantial evolutionary change at speciation events. Finally, the lack of temporal changes in our data suggest that global environmental changes (such as those possibly related to the emplacement of the Deccan Traps Large Igneous Province) had a limited effect on the morphology of North American ammonoid faunas during the latest Cretaceous prior to the K/Pg mass extinction event.Missing morphometric values are highlighted with NA in the dataset.Funding provided by: National Science FoundationCrossref Funder Registry ID: http://dx.doi.org/10.13039/100000001Award Number: 1924807Funding provided by: American Museum of Natural History and Richard Gilder Graduate School*Crossref Funder Registry ID: Award Number:We assembled a large morphometric dataset consisting of 328 individual fossil specimens of the scaphitid ammonoid cephalopod Discoscaphites iris collected from nine localities in Texas, Missouri, Mississippi, and New Jersey, representing a ~2000 km transect from SW to NE and encompassing the full geographic range of this species. Morphometric parameters were measured on well-preserved adult specimens of two dimorphs (Macroconchs - presumably the female, and microconch, presumably the male). We took up to seven morphometric measurements, and calculated ratios that captured the size, shape, and degree of compression of each of these ammonoid shells from each different locality. We evaluated the coefficient of variation (the standard deviation divided by the mean) for size and shape ratios as well as compression ratios at each locality. We used non-parametric statistical tests [Mann-Whitney U] to evaluate the significance of changes in mean morphological trait values between localities. To correct for multiple comparisons we applied a Bonferroni correction and also controlled for the false discovery rate. We also explored relationships between morphological traits and several environmental variables using linear modelling. All analyses were conducted in the R programming environment

    Late Cretaceous ammonoids show that drivers of diversification are regionally heterogeneous

    Get PDF
    Palaeontologists have long sought to explain the diversification of individual clades to whole biotas at global scales. Advances in our understanding of the spatial distribution of the fossil record through geological time, however, has demonstrated that global trends in biodiversity were a mosaic of regionally heterogeneous diversification processes. Drivers of diversification must presumably have also displayed regional variation to produce the spatial disparities observed in past taxonomic richness. Here, we analyse the fossil record of ammonoids, pelagic shelled cephalopods, through the Late Cretaceous, characterised by some palaeontologists as an interval of biotic decline prior to their total extinction at the Cretaceous-Paleogene boundary. We regionally subdivide this record to eliminate the impacts of spatial sampling biases and infer regional origination and extinction rates corrected for temporal sampling biases using Bayesian methods. We then model these rates using biotic and abiotic drivers commonly inferred to influence diversification. Ammonoid diversification dynamics and responses to this common set of diversity drivers were regionally heterogeneous, do not support ecological decline, and demonstrate that their global diversification signal is influenced by spatial disparities in sampling effort. These results call into question the feasibility of seeking drivers of diversity at global scales in the fossil record

    Late Cretaceous ammonoids show that drivers of diversification are regionally heterogeneous

    Get PDF
    Palaeontologists have long sought to explain the diversification of individual clades to whole biotas at global scales. Advances in our understanding of the spatial distribution of the fossil record through geological time, however, has demonstrated that global trends in biodiversity were a mosaic of regionally heterogeneous diversification processes. Drivers of diversification must presumably have also displayed regional variation to produce the spatial disparities observed in past taxonomic richness. Here, we analyse the fossil record of ammonoids, pelagic shelled cephalopods, through the Late Cretaceous, characterised by some palaeontologists as an interval of biotic decline prior to their total extinction at the Cretaceous-Paleogene boundary. We regionally subdivide this record to eliminate the impacts of spatial sampling biases and infer regional origination and extinction rates corrected for temporal sampling biases using Bayesian methods. We then model these rates using biotic and abiotic drivers commonly inferred to influence diversification. Ammonoid diversification dynamics and responses to this common set of diversity drivers were regionally heterogeneous, do not support ecological decline, and demonstrate that their global diversification signal is influenced by spatial disparities in sampling effort. These results call into question the feasibility of seeking drivers of diversity at global scales in the fossil record

    Collaborative action for person-centred coordinated care (P3C): an approach to support the development of a comprehensive system-wide solution to fragmented care

    Get PDF
    BACKGROUND: Fragmented care results in poor outcomes for individuals with complexity of need. Person-centred coordinated care (P3C) is perceived to be a potential solution, but an absence of accessible evidence and the lack of a scalable 'blue print' mean that services are 'experimenting' with new models of care with little guidance and support. This paper presents an approach to the implementation of P3C using collaborative action, providing examples of early developments across this programme of work, the core aim of which is to accelerate the spread and adoption of P3C in United Kingdom primary care settings. METHODS: Two centrally funded United Kingdom organisations (South West Collaboration for Leadership in Applied Health Research and Care and South West Academic Health Science Network) are leading this initiative to narrow the gap between research and practice in this urgent area of improvement through a programme of service change, evaluation and research. Multi-stakeholder engagement and co-design are core to the approach. A whole system measurement framework combines outcomes of importance to patients, practitioners and health organisations. Iterative and multi-level feedback helps to shape service change while collecting practice-based data to generate implementation knowledge for the delivery of P3C. The role of the research team is proving vital to support informed change and challenge organisational practice. The bidirectional flow of knowledge and evidence relies on the transitional positioning of researchers and research organisations. RESULTS: Extensive engagement and embedded researchers have led to strong collaborations across the region. Practice is beginning to show signs of change and data flow and exchange is taking place. However, working in this way is not without its challenges; progress has been slow in the development of a linked data set to allow us to assess impact innovations from a cost perspective. Trust is vital, takes time to establish and is dependent on the exchange of services and interactions. If collaborative action can foster P3C it will require sustained commitment from both research and practice. This approach is a radical departure from how policy, research and practice traditionally work, but one that we argue is now necessary to deal with the most complex health and social problems

    Nature and timing of biotic recovery in Antarctic benthic marine ecosystems following the Cretaceous-Paleogene mass extinction

    Get PDF
    Taxonomic and ecological recovery from the Cretaceousā€“Palaeogene (Kā€“Pg) mass extinction 66 million years ago shaped the composition and structure of modern ecosystems. The timing and nature of recovery has been linked to many factors including palaeolatitude, geographical range, the ecology of survivors, incumbency and palaeoenvironmental setting. Using a temporally constrained fossil dataset from one of the most expanded Kā€“Pg successions in the world, integrated with palaeoenvironmental information, we provide the most detailed examination of the patterns and timing of recovery from the Kā€“Pg mass extinction event in the high southern latitudes of Antarctica. The timing of biotic recovery was influenced by global stabilization of the wider Earth system following severe environmental perturbations, apparently regardless of latitude or local environment. Extinction intensity and ecological change were decoupled, with community scale ecological change less distinct compared to other locations, even if the taxonomic severity of the extinction was the same as at lower latitudes. This is consistent with a degree of geographical heterogeneity in the recovery from the Kā€“Pg mass extinction. Recovery in Antarctica was influenced by local factors (such as water depth changes, local volcanism, and possibly incumbency and preā€adaptation to seasonality of the local benthic molluscan population), and also showed global signals, for example the radiation of the Neogastropoda within the first million years of the Danian, and a shift in dominance between bivalves and gastropods

    The provenance of Borneo's enigmatic alluvial diamonds:A case study from Cempaka, SE Kalimantan

    Get PDF
    Gem-quality diamonds have been found in several alluvial deposits across central and southern Borneo. Borneo has been a known source of diamonds for centuries, but the location of their primary igneous source remains enigmatic. Many geological models have been proposed to explain their distribution, including: the diamonds were derived from a local diatreme; they were brought to the surface through ophiolite obduction or exhumation of UHP metamorphic rocks; they were transported long distances southward via major Asian river systems; or, they were transported from the Australian continent before Borneo was rifted from its northwestern margin in the Late Jurassic. To assess these models, we conducted a study of the provenance of heavy minerals from Kalimantan's Cempaka alluvial diamond deposit. This involved collecting Uā€“Pb isotopic data, fission track and trace element geochemistry of zircon as well as major element geochemical data of spinels and morphological descriptions of zircon and diamond. The results indicate that the Cempaka diamonds were likely derived from at least two sources, one which was relatively local and/or involved little reworking, and the other more distal which records several periods of reworking. The distal diamond source is interpreted to be diamond-bearing pipes that intruded the basement of a block that: (1) rifted from northwest Australia (East Java or SW Borneo) and the diamonds were recycled into its sedimentary cover, or: (2) were emplaced elsewhere (e.g. NW Australia) and transported to a block (e.g. East Java or SW Borneo). Both of these scenarios require the diamonds to be transported with the block when it rifted from NW Australia in the Late Jurassic. The local source could be diamondiferous diatremes associated with eroded Miocene high-K alkaline intrusions north of the Barito Basin, which would indicate that the lithosphere beneath SW Borneo is thick (~ 150 km or greater). The ā€˜localā€™ diamonds could also be associated with ophiolitic rocks that are exposed in the nearby Meratus Mountains
    • ā€¦
    corecore