2,266 research outputs found
Beam test studies with silicon sensor module prototypes for the CMS Phase-2 Outer Tracker
The Large Hadron Collider (LHC) at CERN will be upgraded to the High-Luminosity LHC (HL-LHC) by 2029. In order to fully exploit the physics potential of the high luminosity era the experiments must undergo major upgrades. In the context of the upgrade of the Compact Muon Solenoid (CMS) experiment the silicon tracker will be fully replaced. The outer part of the new tracker (Outer Tracker) will be equipped with about 13,000 double-layer silicon sensor modules with two different flavors: PS modules consisting of a macro-pixel and a strip sensor and 2S modules using two strip sensors. These modules can discriminate between trajectories of charged particles with low and high transverse momentum. The different curvature of the trajectories in the CMS magnetic field leads to different hit signatures in the two sensor layers. By reading out both sensors, matching hits in the seed and correlation layer "stubs" are identified. This stub information is generated at the LHC bunch crossing frequency of 40âMHz and serves as input for the first stage of the CMS trigger. In order to quantify the hit and stub detection efficiency, beam tests have been performed. This article comprises selected studies from measurements gathered during two beam tests at the DESY test beam facility with 2S prototype modules assembled in 2021, featuring the Low Power Gigabit Transceiver (lpGBT). In order to compare the module performance at the beginning and end of the CMS runtime, a module with irradiated components has been built and intensively tested
Quenching Effects in the Hadron Spectrum
Lattice QCD has generated a wealth of data in hadronic physics over the last
two decades. Until relatively recently, most of this information has been
within the "quenched approximation" where virtual quark--anti-quark pairs are
neglected. This review presents a descriptive discussion of the effects of
removing this approximation in the calculation of hadronic masses.Comment: To appear in "Lattice Hadron Physics", ed. A.C. Kalloniatis, D.B.
Leinweber and A.G. William
Propagation of Large Uncertainty Sets in Orbital Dynamics by Automatic Domain Splitting
Current approaches to uncertainty propagation in astrodynamics mainly refer to linearized models or Monte Carlo simulations. Naive linear methods fail in nonlinear dynamics, whereas Monte Carlo simulations tend to be computationally intensive. Differential algebra has already proven to be an efficient compromise by replacing thousands of pointwise integrations of Monte Carlo runs with the fast evaluation of the arbitrary order Taylor expansion of the flow of the dynamics. However, the current implementation of the DA-based high-order uncertainty propagator fails when the non-linearities of the dynamics prohibit good convergence of the Taylor expansion in one or more directions. We solve this issue by introducing automatic domain splitting. During propagation, the polynomial expansion of the current state is split into two polynomials whenever its truncation error reaches a predefined threshold. The resulting set of polynomials accurately tracks uncertainties, even in highly nonlinear dynamics. The method is tested on the propagation of (99942) Apophis post-encounter motion
Software that goes with the flow in systems biology
A recent article in BMC Bioinformatics describes new advances in workflow systems for computational modeling in systems biology. Such systems can accelerate, and improve the consistency of, modeling through automation not only at the simulation and results-production stages, but also at the model-generation stage. Their work is a harbinger of the next generation of more powerful software for systems biologists
Renormalization of minimally doubled fermions
We investigate the renormalization properties of minimally doubled fermions,
at one loop in perturbation theory. Our study is based on the two particular
realizations of Borici-Creutz and Karsten-Wilczek. A common feature of both
formulations is the breaking of hyper-cubic symmetry, which requires that the
lattice actions are supplemented by suitable counterterms. We show that three
counterterms are required in each case and determine their coefficients to one
loop in perturbation theory. For both actions we compute the vacuum
polarization of the gluon. It is shown that no power divergences appear and
that all contributions which arise from the breaking of Lorentz symmetry are
cancelled by the counterterms. We also derive the conserved vector and
axial-vector currents for Karsten-Wilczek fermions. Like in the case of the
previously studied Borici-Creutz action, one obtains simple expressions,
involving only nearest-neighbour sites. We suggest methods how to fix the
coefficients of the counterterms non-perturbatively and discuss the
implications of our findings for practical simulations.Comment: 23 pages, 1 figur
Non-perturbative renormalisation of left-left four-fermion operators with Neuberger fermions
We outline a general strategy for the non-perturbative renormalisation of
composite operators in discretisations based on Neuberger fermions, via a
matching to results obtained with Wilson-type fermions. As an application, we
consider the renormalisation of the four-quark operators entering the Delta S=1
and Delta S=2 effective Hamiltonians. Our results are an essential ingredient
for the determination of the low-energy constants governing non-leptonic kaon
decays.Comment: 14 pages, 3 figure
Overview of Plasma Lens Experiments and Recent Results at SPARC_LAB
Beam injection and extraction from a plasma module is still one of the
crucial aspects to solve in order to produce high quality electron beams with a
plasma accelerator. Proper matching conditions require to focus the incoming
high brightness beam down to few microns size and to capture a high divergent
beam at the exit without loss of beam quality. Plasma-based lenses have proven
to provide focusing gradients of the order of kT/m with radially symmetric
focusing thus promising compact and affordable alternative to permanent magnets
in the design of transport lines. In this paper an overview of recent
experiments and future perspectives of plasma lenses is reported
Beam test results of silicon sensor module prototypes for the Phase-2 Upgrade of the CMS Outer Tracker
The start of the High-Luminosity LHC (HL-LHC) in 2027 requires upgrades to the Compact Muon Solenoid (CMS) Experiment. In the scope of the upgrade program the complete silicon tracking detector will be replaced. The new CMS Tracker will be equipped with silicon pixel detectors in the inner layers closest to the interaction point and silicon strip detectors in the outer layers. The new CMS Outer Tracker will consist of two different kinds of detector modules called PS and 2S modules. Each module will be made of two parallel silicon sensors (a macro-pixel sensor and a strip sensor for the PS modules and two strip sensors for the 2S modules). Combining the hit information of both sensor layers it is possible to estimate the transverse momentum of particles in the magnetic field of 3.8 T at the full bunch-crossing rate of 40 MHz directly on the module. This information will be used as an input for the first trigger stage of CMS.
It is necessary to validate the Outer Tracker module functionality before installing the modules in the CMS experiment. Besides laboratory-based tests several 2S module prototypes have been studied at test beam facilities at CERN, DESY and FNAL. This article concentrates on the beam tests at DESY during which the functionality of the module concept was investigated using the full final readout chain for the first time. Additionally the performance of a 2S module assembled with irradiated sensors was studied. By choosing an irradiation fluence expected for 2S modules at the end of HL-LHC operation, it was possible to investigate the particle detection efficiency and study the trigger capabilities of the module at the beginning and end of runtime of the CMS experiment.The start of the High-Luminosity LHC (HL-LHC) in 2027 requires upgrades to the Compact Muon Solenoid (CMS) experiment. In the scope of the upgrade program the complete silicon tracking detector will be replaced. The new CMS Trackerâwill be equipped with silicon pixel detectors in the inner layers closest to the interaction pointâand silicon strip detectors in the outer layers. The new CMS Outer Trackerâwill consist of two different kinds of detector modules called PS and 2S modules. Each module will be made of two parallel silicon sensors (a macro-pixel sensor and a strip sensor for the PS modules and two strip sensors for the 2S modules). Combining the hit information of both sensor layers, it is possible to estimate the transverse momentum of particles in the magnetic field of 3.8âT at the full bunch-crossing rate of 40âMHz directly on the module. This information will be used as an input for the first trigger stage of CMS. It is necessary to validate the Outer Trackerâmodule functionality before installing the modules in the CMS experiment. Besides laboratory-based tests several 2S module prototypes have been studied at test beam facilities at CERN, DESY and FNAL. This article concentrates on the beam tests at DESY during which the functionality of the module concept was investigated using the full final readout chain for the first time. Additionally the performance of a 2S module assembled with irradiated sensors was studied. By choosing an irradiation fluence expected for 2S modules at the end of HL-LHC operation, it was possible to investigate the particle detection efficiency and study the trigger capabilities of the module at the beginning and end of the runtime of the CMS experiment
- âŠ