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Abstract Current approaches to uncertainty propagation in astrodynamics
mainly refer to linearized models or Monte Carlo simulations. Naive linear
methods fail in nonlinear dynamics, whereas Monte Carlo simulations tend
to be computationally intensive. Differential algebra has already proven to
be an efficient compromise by replacing thousands of pointwise integrations
of Monte Carlo runs with the fast evaluation of the arbitrary order Taylor
expansion of the flow of the dynamics. However, the current implementa-
tion of the DA-based high-order uncertainty propagator fails when the non-
linearities of the dynamics prohibit good convergence of the Taylor expansion
in one or more directions. We solve this issue by introducing automatic do-
main splitting. During propagation, the polynomial expansion of the current
state is split into two polynomials whenever its truncation error reaches a
predefined threshold. The resulting set of polynomials accurately tracks un-
certainties, even in highly nonlinear dynamics. The method is tested on the
propagation of (99942) Apophis post-encounter motion.
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1 Introduction

Nonlinear propagation of uncertainties plays a key role in astrodynamics.
Orbit determination is affected by measurement errors; consequently, the
knowledge of the state of any spacecraft or celestial body is characterized
by an estimable level of uncertainty. Typically these uncertainties need to
be propagated forward in time, for example for spacecraft navigation or to
estimate the collision risk between artificial satellites or the threat from near
Earth objects. As orbital dynamics is highly nonlinear the size of the uncer-
tainty set tends to quickly increase along the trajectory. Nonlinearities are
not confined to object dynamics: even simple conversions between different
coordinate systems (e.g. the conversion from polar to Cartesian coordinates
that forms the foundation for the observation models of many sensors) in-
troduce significant nonlinearities and, thus, affect the accuracy of classical
uncertainty propagation techniques.

Uncertainty propagation in nonlinear systems is extremely difficult. Present-
day approaches mainly refer to linearized propagation models (Battin, 1999;
Montebruck and Eberhard, 2001; Crassidis and Junkins, 2004) or full non-
linear Monte Carlo simulations (Maybeck, 1982). The linear assumption sig-
nificantly simplifies the problem, but the accuracy of the solution drops off
in case of highly nonlinear systems and/or long time propagations. On the
other hand, Monte Carlo simulations provide true trajectory statistics, but
are computationally intensive and therefore, in many cases, unmanageable.
Thus, the main challenge in uncertainty propagation is to develop methods
that can accurately map uncertainties in nonlinear system with limited com-
putational effort.

The unscented transformation (UT) was proposed to address the deficien-
cies of linearization: a limited number of samples are deterministically chosen
to match the mean and covariance of a (non necessarily Gaussian-distributed)
probability distribution (Julier and Uhlmann, 2004; Julier, 2002). The main
drawback of the approach is that it delivers a second order approximation
of the first two moments of the mapped statistical distributions. This can
turn out to be inadequate for applications when higher order moments are
needed to accurately describe the propagated uncertainty set. Gaussian mix-
tures (Giza et al., 2009; Horwood and Poore, 2001; Jah and Kelecy, 2009)
have been introduced as a possible way to overcome this limitation. The
method is based on the fact that any probability density function can be
represented by a weighted sum of Gaussian distributions. As each of these
distributions is defined on a reduced domain, a linearized approach or UT
can be employed to individually map each of them without a significant loss
in accuracy.

An alternative way to map the statistics is based on the approxima-
tion of the flow of the dynamics in Taylor series and the use of the re-
sulting polynomials as dynamical substitutes. This approach was presented
by Park and Scheeres (2006), and later investigated by other researchers
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(Majji et al., 2008; Viitaldev et al., 2012). It was shown that a good agree-
ment with Monte Carlo simulations can be achieved, however the derivation
of the dynamics of the high order tensor can be complex from the computa-
tional standpoint, especially for high fidelity dynamics.

These difficulties were addressed by the authors in past works, in which
a technique called differential algebra (DA) was used to automatically ex-
pand the flow of the dynamics up to an arbitrary order (Di Lizia et al., 2008;
Armellin et al., 2010). Nonlinear uncertainty propagation can take advan-
tage of the high order expansions of the flow. For example, as the accuracy
of the Taylor expansion can be tuned by adjusting the expansion order, the
approach of classical Monte Carlo simulations can be enhanced by replac-
ing thousands of integrations with evaluations of the Taylor expansion of
the flow. The most established DA computation tool is COSY INFINITY
by Berz and Makino (Berz and Makino, 2006) which is used in this work.
Other implementations of DA techniques have recently been implemented in
academia, e.g. Jet Transport (Alessi et al., 2009), or in industry such as the
DA code JACK developed by Thales Alenia Space (Bignon et al., 2014).

Differential algebra has already proven its efficiency in the nonlinear prop-
agation of uncertainties within different dynamical models, including two-
body dynamics (Valli et al., 2012), (n+1)- body dynamics (Armellin et al.,
2010), and geocentric models (including Earth’s gravitational harmonics, so-
lar radiation pressure, shadows, and third body perturbations) (Morselli et al.,
2010). Nonetheless, the accuracy of the method tends to decrease drastically
when the uncertainty domain becomes too stretched in one or more direc-
tions. This can be due to one or a combination of the following causes: high
nonlinearity of the dynamics, large initial uncertainty sets, and long term
propagations.

The propagation of asteroids motion after a close encounter with a major
body is a typical example. As reported by Valsecchi et al. (2006), the asteroid
(99942) Apophis will have an extremely close approach to the Earth on 13
April 2029. The asteroid orbit will suffer a very large perturbation, opening
the door to the possibility of a resonant return in 2036. The nonlinearities of
the close encounter and of the post-encounter motion will make any uncer-
tainty in the direction anti-parallel to the Earth heliocentric motion in 2029
diverge by a factor of 40000 in 2036. While performing better than classi-
cal linearized methods, the current implementation of the DA uncertainty
propagator still is inaccurate and impractical in such cases, due to the pro-
hibitively high order required to describe the resulting uncertainty sets by
a single polynomial. Furthermore, in the case of impacts for some part of
the initial conditions, it is mathematically impossible to represent the entire
resulting uncertainty set by a single polynomial expansion (Di Lizia et al.,
2009; Alessi et al., 2009).

To overcome these problems, this work introduces a novel method, re-
ferred to as automatic domain splitting, into the DA uncertainty propagator.
It handles those situations in which a single Taylor expansion of the flow is
not enough to accurately map the entire initial uncertainty set. The underly-
ing idea is to split the initial domain into manageable subdomains over which
the Taylor expansion shows good convergence properties. This “divide-and-



4

conquer”style approach is common in the field of verified numerics. The DA
algorithm developed in this work extends the traditional method in various
ways, most importantly by performing the subdivision of the initial domain
adaptively as needed during the integration instead of a priori. This yields
not only a large gain in computational performance as the initial set is auto-
matically subdivided into optimally sized subsets, but also reveals valuable
information about the dynamical behavior in different regions of the initial
conditions.

In past works, the authors have already studied the same asteroid (99942)
Apophis (Di Lizia et al., 2009) using the self-validating Taylor Model inte-
grator COSY VI (Makino and Berz, 2009). Employing its own conceptually
similar splitting technique, COSY VI was able to manage the propagation
only until shortly after the first close encounter. This is because the purpose
of COSY VI is the rigorous verified integration of initial conditions, bringing
along with it different, more stringent requirements.

In this work, this problem is overcome by introducing a dedicated auto-
matic procedure to identify the necessity of splitting during the integration,
determine the direction in which to split, and to manage the resulting sets.
During the integration of the initial condition, the polynomial representing
the current state is constantly monitored. When the nonlinearities of the
system cause the estimated truncation error of the polynomial to grow too
large, integration is paused and the domain of the polynomial is split into
two halves along the variable with the largest contribution to the trunca-
tion error. This yields two new polynomials, one covering each half of the
initial condition set. Since the split of the domain of one variable into half
causes the nth order terms of that variable to shrink by a factor of 2n, this
method efficiently reduces the size of the highest order terms. Integration is
then resumed on each one of the two new polynomials until either further
splits are required or the final state is reached. The final result of this proce-
dure is a list of final state polynomials, each describing the evolution of some
automatically determined subset of the initial condition.

The application of the resulting tool to the propagation of asteroid (99942)
Apophis motion is addressed in the second part of this paper. Automatic do-
main splitting is shown to overcome the previously described issues of the
DA uncertainty propagator and to pave the way to a innovative approach to
study the challenging problem of resonant returns. As an additional contri-
bution, the paper proposes the use of the resulting splitting structure at the
end of the propagation as a novel method to infer the dynamical behavior of
the system over the initial uncertainty domain.

The paper is organized as follows. In the next section, a brief introduction
is given about DA techniques and the high order expansion of the flow of an
ODE is described. A simple application to the propagation of uncertainties
in Kepler’s dynamics is presented to show the advantages of high order prop-
agation with respect to linear methods and to illustrate its limits for large
uncertainty sets and nonlinear dynamics. Automatic domain splitting is then
introduced and the uncertainty propagation in Kepler’s dynamics is resumed
to show the advantages of domain splitting over standard high order propaga-
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tion. Lastly, the performances of the resulting splitting DA-based integrator
are assessed on the propagation of asteroid (99942) Apophis.

2 Differential Algebra and High Order Flow Expansion

DA supplies the tools to compute the derivatives of functions within a com-
puter environment (Berz, 1999a). More specifically, by substituting the classi-
cal implementation of real algebra with the implementation of a new algebra
of Taylor polynomials, any function f of v variables is expanded into its
Taylor polynomial up to an arbitrary order n with limited computational
effort. In addition to basic algebraic operations, operations for differentia-
tion and integration can be easily introduced in the algebra, thusly final-
izing the definition of the differential algebra structure of DA (Berz, 1986,
1987). Similarly to algorithms for floating point arithmetic, also in DA vari-
ous algorithms were introduced, including methods to perform composition of
functions, to invert them, to solve nonlinear systems explicitly, and to treat
common elementary functions (Berz, 1999b). The differential algebra used
for the computations in this work was implemented in the software COSY
INFINITY (Berz and Makino, 2006).

An important application of DA is the automatic high order expansion
of the solution of an ODE in terms of the initial conditions (Berz, 1999a;
Armellin et al., 2010). This can be achieved by replacing the operations in
a classical numerical integration scheme, including evaluation of the right
hand side, by the corresponding DA operations. This way, starting from the
DA representation of an initial condition x0, DA ODE integration allows the
propagation of the Taylor expansion of the flow in x0 forward in time, up
to any final time tf . Any explicit ODE integration scheme can be rewritten
as a DA integration scheme in a straight-forward way. For the numerical
integrations presented in this paper, a DA version of a 7/8 Dormand-Prince
(8-th order solution for propagation, 7-th order solution for step size control)
Runge-Kutta scheme is used. The main advantage of the DA-based approach
is that there is no need to write and integrate variational equations in order
to obtain high order expansions of the flow. It is therefore independent of
the particular right hand side of the ODE and the method is quite efficient
in terms of computational cost.

2.1 Kepler’s Dynamics Example

To illustrate the method, we consider the dynamics of a celestial body moving
in the framework of the two-body problem

{

ṙ = v

v̇ = − µ
r3 r,

(1)

where r and v are the object position and velocity vectors respectively, and µ
is the Sun gravitational parameter. The nominal initial conditions are set such
that the object starts moving from the pericenter of an orbit with eccentricity
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of 0.5, lying on the ecliptic plane (see the dotted line in Fig. 1a). The units
are normalized in such a way that both the pericenter radius and µ are equal
to 1, thus leading to the following initial conditions:























x = 1

y = 0

ẋ = 0

ẏ =
√
1.5

(2)

In these units the nominal orbital period is 2π
√
8.

The DA-based integrator is used to compute a 6th order expansion of the
ODEs flow along the orbit. The x and y components of the initial position
are then supposed to lie in an uncertainty box of size 0.008 and 0.08 in the x
and y direction respectively. As can be seen in Fig. 1, this is a rather unre-
alistic uncertainty set, which has been exaggerated for illustrative purposes.
The evolution of the resulting initial box is now investigated by propagating
its boundary. More specifically, a uniform sampling of the boundary is per-
formed. Then, for each sample, the displacement with respect to the nominal
initial conditions is computed and the 6th order polynomial maps obtained
with the DA-based integrator are evaluated. In this way, for each integration
time, the evolved set can be plotted by means of mere polynomial evalua-
tions. The evolved set is reported in Fig. 1(a) corresponding to nine integra-
tion times uniformly distributed over the orbital period. The time required
by COSY INFINITY for the computation of the 6th order map is about 0.15
s on a 2.4 GHz Intel Core i5 MacBook Pro running Mac OS X 10.9.1.
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(a) Evolution of the initial set over an
orbital period.
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(b) Accuracy analysis on the set at
ti = 16 (after 0.9 nominal orbital revo-
lutions).

Fig. 1 Propagation of a set of initial positions in the two-body problem using the
6th order Taylor expansion of the flow of the associated ODE.

The accuracy of the Taylor expansion of the flow is better highlighted
in Fig. 1(b). Focusing on the integration time ti = 16, the figure reports
the set obtained with a multiple pointwise integration of the samples (solid
line). The propagated sets obtained by the evaluation of the polynomial maps
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representing the flow of the ODE in Eq. (1) are then plotted for comparison,
corresponding to different expansion orders. The figure shows that a 6th
order expansion of the flow is necessary to achieve a visually accurate result
(i.e. a relative error of the order of 10−4) for the large initial uncertainty set
considered in this example. Note that depending on the actual application,
stricter requirements may be appropriate.

Unfortunately, the accuracy of the 6th order Taylor expansion drastically
decreases for longer integration times. Figure 2a focuses on the integration
time ti = 34.85, which corresponds to only about 1.96 revolutions of the
nominal initial condition. The figure compares the set obtained by a multiple
pointwise integration of the samples with that resulting from the evaluation
of the 6th order polynomial map. The 6th order expansion is not able to
accurately describe the exact set. Even increasing the order of the Taylor
expansion does not improve the accuracy. This is confirmed in Fig. 2b, where
the results of a 14th order expansion of the ODEs flow are compared with
the exact set.

Figures 2(a) and 2(b) demonstrate the aforementioned fact that a sin-
gle Taylor expansion of reasonable order is not always able to accurately
describe the evolution of an initial uncertainty set. Consequently, while per-
forming better than classical linearized methods, the high order integrator
described above may fail to accurately track uncertainties depending on the
nonlinearity of the dynamics, the size of the uncertainty set to be propagated,
and the propagation time.
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(a) 6th order Taylor expansion.
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(b) 14th order Taylor expansion.

Fig. 2 Uncertainty set at ti = 34.85 (after 1.96 nominal revolutions).

Automatic domain splitting can play a crucial role to solve the previously
described issues. In the course of the integration of the initial conditions,
the uncertainty set is split along its variables when the nonlinearities of the
system cause the Taylor expansion to lose accuracy. This yields a list of
final polynomials, each one expanded around a different point in the initial
condition box and covering a subset of the initial conditions. The technique
and its advantages with respect to the current implementation of the DA-
based integrator are described in the next section.
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3 Automatic Domain Splitting

The approximation error between an n+ 1 times differentiable function f ∈
Cn+1 and its Taylor expansion Pf of order n, without loss of generality taken
around the origin, is given by Taylor’s theorem (Rudin, 1976):

|f(δx)− Pf (δx)| 6 C · δxn+1 (3)

for some constant C > 0. We remark in passing that Taylor’s theorem does
not require f to be analytic, it is sufficient that f ∈ Cn+1.

Consider now the maximum error er of Pf on a domain Br of radius r > 0
around the expansion point. By Eq. 3 we have that

|f(δx)− Pf (δx)| 6 C · δxn+1
6 C · rn+1 = er

If the domain of Pf is reduced from Br to a ball Br/2 of radius r/2, the

maximum error of Pf over Br/2 will decrease by a factor of 1/2n+1, i.e.

|f(δx)− Pf (δx)| 6 C · δxn+1
6 C ·

(r

2

)n+1

=
er

2n+1

We observe that for sufficiently large expansion orders, such as e.g. n = 9,
the effect of reducing the size of the domain by half is thus greatly amplified
and the maximum error is reduced by a factor of 1

210
≈ 10−4. One solution

to the previously described problem of non-convergence of the polynomial
expansion over its initial domain is therefore to subdivide the initial domain
into smaller domains and compute the Taylor expansion around the center
point of each of the new domains. Then the error of the new polynomial ex-
pansions in each sub domain is greatly reduced, while taken in their entirety,
the expansions still cover the entire initial set.

This process is often referred to as a divide and conquer strategy, and is
very common in the field of numerical analysis (Moore et al., 2009). However,
the method described before suffers from an important drawback. To man-
ually subdivide the initial domain into smaller subsets of a predefined size,
it is necessary to know a priori the required size of the subdivided domains
to obtain the desired error. If the initial domains are chosen too small, pre-
cious computational time is wasted computing expansions over several small
domains where one large domain would have sufficed.

Furthermore, for practical reasons such subdivisions are typically per-
formed in a uniform manner, producing a uniform grid. This adds to the
computational cost as often times the dynamical behaviour of the function f
being expanded differs significantly over the various parts of its domain. In
some regions expansions over larger subsets will yield the required accuracy,
while other regions may be more critical and require expansions to be on a
more finely spaced grid.

Lastly, in the case of the expansion of the flow of an ODE, the a priori
splitting of the initial domain into sub domains causes computational yet
additional unnecessary overhead due to the fact that the flow at the begin-
ning of the integration (t = t0) is just the identity, i.e. ϕ(t0;x) = x. At
this initial time, the entire flow over the initial condition can be accurately



9

t=t0 t = ti t = ti+1

error < ! error > !

error < !

!

"

Fig. 3 Illustration of the propagation process with domain splitting.

represented by the identity polynomial. As the integration of the dynamics
progresses, the flow ϕ is distorted away from the identity until such a time
step t = ti+1 at which the polynomial approximation Pϕ surpasses some
pre-specified maximum error ε. Up until the previous time step ti, however,
the flow is described well by just one polynomial expansion over the entire
initial condition, there is no need to perform the integration between t0 and
ti several times using a fine cover of polynomial expansions.

Building on these observations, Automatic Domain Splitting employs an
automatic algorithm to determine at which time the flow expansion over a
given set of initial conditions does not describe the dynamics with sufficiently
high accuracy any more. Once this case has been detected, the domain of the
original polynomial expansion is divided along one of the expansion variables
into two domains of half their original size. By re-expanding the polynomials
around the new center points, two separate polynomial expansions are ob-
tained. As the re-expansion of the polynomials does not change their order,
each of the new polynomials is identical to the original polynomial on its
respective domain. This process is illustrated in Fig. 3.

More specifically, let P (x) be the polynomial representation of the flow
ϕ(ti;x) at some time ti, where x ∈ [−1, 1]k. The choice of the domain to
be [−1, 1] for each component of x is an arbitrary one, yet this particular
choice simplifies many of the following calculations and has various numerical
advantages as well. Without loss of generality, the domain [−1, 1] of any
component xi can be transformed linearly into any other desired interval
[a, b].

The split of P into P1 and P2 along component xj is defined as

P1(x) = P

(

x1, . . . , xj−1,
1

2
· xj −

1

2
, xj+1, . . . , xk

)

P2(x) = P

(

x1, . . . , xj−1,
1

2
· xj +

1

2
, xj+1, . . . , xk

)

and the domains of P1 and P2 are again assumed to be x ∈ [−1, 1]k.
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From this definition it is evident that P1 is covering the left half (xj ∈
[−1, 0]) of the original domain of xj and P2 covering the right half (xj ∈
[0, 1]). Since both P1 and P2 are again polynomials of the same degree as P ,
this splitting operation can be performed exactly in DA arithmetic without
adding any truncation errors. The new polynomials P1 and P2 have exactly
the same graph as that of P , just expanded around a different expansion
point. However, in accordance with Eq. 3, the terms of order n in xi present
in P1 and P2 will be smaller by a factor of 2n than the corresponding terms
in P .

After such a split occurs, the integration can continue on each one of P1

and P2 in the same manner as described in the previous section until further
splits are required or the final integration time is reached. The result is a
list of polynomial expansions, each covering a specific part of the domain of
initial conditions.

The decision when exactly a polynomial needs to be split, and in the case
of multivariate polynomials the direction of the split, is in general difficult
to answer. We use a method that estimates the size of the n+1 order terms
of the polynomial based on an exponential fit of the size of all the known
non-zero coefficients up to order n. If the size of this truncated order becomes
too large, we decide to split the polynomial.

This method allows us to take into account all the information available
to us in the polynomial expansion in order to obtain an accurate estimate of
the size of the n+ 1 order. Compared to more trivial splitting criteria, such
as only considering the size of the terms of order n, this method improves in
particular the estimates for sparse functions such as functions with symme-
tries like sin and cos where many terms vanish. The exponential fit is chosen
because after reducing the domain by a sufficient number of splits, the coeffi-
cients of the resulting polynomial expansion will in fact decay exponentially
independently of the function being expanded. This is a direct consequence
of Taylor’s Theorem.

To be more precise, given a polynomial P of order n of the form

P (x) =
∑

α

aαx
α

written using multi-index notation, the size Si of the terms of order i is
computed as the sum of the absolute values of all coefficients of exact order
i:

Si =
∑

|α|=i

|aα| .

We denote by I the set of indices i for which Si is non-zero. A least squares
fit of the exponential function

f(i) = A · exp(B · i)

is used to determine the coefficients A,B such that f(i) = Si, i ∈ I is ap-
proximated optimally in the least squares sense. Then the value of f(n+ 1)
is used to estimate the size Sn+1 of the truncated order n + 1 of P . This
method is illustrated in Fig. 4, where the polynomial under consideration is
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Fig. 4 Illustration of the estimation of the truncation error of the Taylor expansion
of

√

1 + x/2 via exponential fitting. Terms of order up to 9 are used for the fitting
(hatched), while the 10th order term (white) is shown for reference.

the Taylor expansion of
√

1 + x/2 up to 9th order. The size Si of each order
used for the least squares fit is shown as hatched bars, while the resulting
fitted function f is shown as a line. As can be seen from this simple exam-
ple, the size of the 10th order term, which was not used in the fitting, is
approximated reasonably well by this method.

As described above, in the case of multivariate polynomials P (x) =
P (x1, x2, . . . , xk), the split is only performed in one component xi. The de-
termination of the splitting direction xi is once again a non-trivial problem.
We use a similar method to determine this direction i as we used previously
for the decision to split. For each j = 1, . . . , n we begin by factoring the
known coefficients of P of order up to n with respect to xj , i.e. we write

P (x1, x2, . . . , xk) =

n
∑

m=0

xm
j · qj,m(x1, . . . , xj−1, xj+1, . . . , xk)

where the polynomials qj,m do not depend on xj . Then the size Sj,m of the
polynomials qj,m is estimated by the sum of the absolute values of their
coefficients and the same exponential fitting routine as described above is
applied to obtain an estimate of the size Sj,n+1 of the truncated terms of
order n+1 in xj . Finally the splitting direction i is chosen to be the direction
corresponding to the component xj with largest truncation error Sj,n+1.

In this way, all splits are performed in the direction of the variable that
currently has the largest estimated contribution to the total truncation error
of the polynomial P , and thus the splits have the maximal impact on reducing
the approximation error. The splitting process described here in general, and
the selection of the splitting direction in particular, are strongly dependent
on the parametrization of the initial condition. The direction of maximum
expansion in general is not aligned with a single direction of the parametriza-
tion, in which case several variables will contribute to the truncation error.
In this case, splits occur automatically along all variables involved. However,
the initial condition can often be parametrized such that expansion happens
mainly along only a few or even just one of the directions.
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3.1 Kepler’s Dynamics Example: Domain Splitting Illustration

Before we present a full analysis of the effect of the splitting precision on
the accuracy, efficiency and number of final sets in the next subsection, we
first demonstrate the domain splitting technique described in the previous
section. We apply it to the same problem of propagating Kepler’s dynamics
as presented in the Sec. 2.1. Computations are performed at order 14 with
the same initial condition box. The splitting precision is set to ε = 3 · 10−4,
meaning that when the estimated truncation error of an expansion exceeds
this limit a split is triggered. The limit was chosen this high to allow for a
better visualization of the splitting process, in actual applications the limit
is typically chosen much lower.

Integrating the dynamics from time t0 = 0 to time tf = 50 (2.81 nominal
revolutions), the entire computation takes about 22 seconds on the same
machine used for the example in the previous section, and produces 23 final
polynomial expansions covering the initial condition.

Figure 5 shows the resulting sets at various times during the integration.
Up until time ta = 16 day (0.90 nominal revolutions), the entire set is well de-
scribed by a single DA expansion. At time tb = 17 (0.96 nominal revolutions),
just before completing the first revolution 2 splits have occurred, leading to
three polynomial patches. Another split is performed at time tc = 33 (1.86
nominal revolutions). Figure 5(d) shows the 15 DA patches that are necessary
to accurately track the uncertainty set at time td = 40 (2.25 nominal revolu-
tions). Then, the number of patches increases to 23 at the final integration
time.

Figure 6 shows the number of splits as a function of the integration time.
As is clear from this graph, the splits do not just happen at random times
equally distributed over the integration period. Instead, splitting decisions
are tightly correlated with the time of perigee passages (highlighted with
grey band in Fig. 6). Clearly, splits cluster around the time of perigee pas-
sage, when the dynamics exhibit the strongest non-linearities and the prop-
agated set is the most distorted. This is in accordance with the previous
observations on the poor convergence of a single polynomial expansion close
to the time or perigee passage in Fig. 2. It also indicates that the automatic
splitting algorithm as introduced above is very efficiently determining the
regions of phase space in which the dynamics require splitting due to high
non-linearities without introducing unneeded splits. As the propagation con-
tinues, the time window in which splitting occurs become wider. This is in
part due to the different initial conditions in the set having different periods,
and the overall growth of the set over time. The splitting algorithm auto-
matically takes these effects into account for each subset when deciding at
which points along the trajectory splits occur.

To further highlight the power of this method compared to the single
polynomial expansion, Fig. 7 focuses on the same integration time ti = 34.85
used in the example presented in the previous section. More specifically,
the figure reports the 9 final resulting polynomials at ti = 34.85 and the
polynomial resulting from a single 14th order Taylor expansion of the flow
on the entire uncertainty set. The comparison between Fig. 7(a) and Fig.
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2(a) shows that automatic domain splitting allows the exact propagated set
to be described to visual accuracy by the 9 Taylor polynomials. Figure 7(b),
on the other hand, illustrates how the automatic domain splitting subdivided
the entire initial uncertainty set into 9 smaller sets of varying size during the
14th order integration. It is apparent that the dynamics in the bottom left
quarter of the initial domain, starting closer to the primary and a little before
perigee passage, requires the most splits.

While rather trivial in this example, splitting pictures such as the one
shown in Fig. 7(b) in general can carry a significant amount of information
about the dynamical behavior of the system under consideration in different
phase space regions. In fact, the size of the boxes in a given region can
give a strong indication of the non-linearity and hence the chaoticity of the
motion there. Especially in higher dimensional cases, splitting pictures allow
the identification of sensitivity to initial conditions by analyzing the number
of splits in each direction of the final sets. Furthermore, different regions of
dynamical regimes can be identified by analyzing the size of the resulting
sets over the initial domain.
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Fig. 5 Propagation of the initial uncertainty set in the two-body dynamics using
14th order Taylor expansions of the flow and automatic domain splitting.
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Fig. 6 Time versus the number of splits required by the automatic domain splitting
algorithm. The times of perigee passages are highlighted with grey bands.

3.2 Kepler’s Dynamics: Effect of Splitting Precision

Having illustrated the method using the previous example, we now proceed
to add a quantitative analysis of the automatic domain splitting algorithm
applied to Keplerian dynamics. In particular, we focus on the effect of the
parameter to the splitting algorithm, the splitting precision ε, on the accuracy
of the resulting polynomials, the computation time, and the number of splits
required.

To this end, we consider the same problem described in Sec. 2.1, but
propagated for 35 non-dimensional time units and with the following settings
for the splitting precision ε:

ε ∈ {10−3, 10−4, 10−5, 10−6, 10−7, 10−8, 10−9}
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(b) Final subdivision of the initial do-
main in 9 subdomains.

Fig. 7 Propagation of the initial uncertainty set in the two-body dynamics to
ti = 34.85 with automatic domain splitting.
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Table 1 Dependence of computational time, maximum error of the Taylor expan-
sion, and number of polynomials on the splitting precision ε

ε Comp. Time (s) # of polynomials Max. Error

10−3 17.9 12 3.31 · 10−2

10−4 22.3 14 3.70 · 10−3

10−5 28.4 17 2.20 · 10−4

10−6 35.3 21 5.71 · 10−5

10−7 49.2 31 6.05 · 10−6

10−8 63.0 40 9.61 · 10−7

10−9 84.2 55 4.52 · 10−8

These values are now chosen as they are more representative of a real world
application. The integrations are performed using a Dormand-Prince 7/8
order Runge-Kutta integration scheme with automatic step size control set
to a one step integration error of 10−12.

In Table 1, for each such setting the computational time on a 2.9 GHz
Intel Core i5 iMac with 8 GB DDR3 RAM is reported along with the final
number of polynomials at the end of the integration. For each final set of the
integration, the evaluation of the polynomial at the center, the corner points,
and 100 randomly chosen points within the set is compared to pointwise
integrations of each corresponding initial condition and the maximum error
encountered is reported.

This analysis shows that the maximum error over the resulting set of
polynomial expansions decreases linearly with the selected splitting preci-
sion as expected. However, the maximum error is always larger than the
selected integration precision. This too is expected, as a close analysis of the
description of the splitting algorithm reveals. The splitting precision plays
a similar role as the one-step error set in the automatic step size control
of the integration scheme. It is the maximum error that can accumulate at
any time before the integrator takes action to reduce further error accumu-
lation. However, the accumulated error at the time of the splitting cannot be
undone as the splitting solely re-expands the (possibly already inaccurate)
polynomial to prevent exponential error growth in future integration steps.
The ideal tolerance for the splitting precision depends both on the dynamics,
as more splits lead to more accumulation of approximation errors, and the
integration time. It has to be chosen heuristically to ensure the final result
satisfies the accuracy requirements of the application, exactly as the one-step
tolerance of the automatic step size control of the integrator.

In the above analysis, we fixed the integrator precision to a low value
of 10−12 in order to reduce the number of factors affecting the result and to
isolate the true effect of the splitting precision setting on the result. In a prac-
tical application, the choice of the two tolerances is related, as the final error
of the solution is affected by both values. In general it is advisable to choose
the integration tolerance several orders of magnitude lower than the splitting
tolerance. This is because in a typical integration the number of integrations
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steps, and hence the number of single-step errors, is much larger than the
number of splits, and hence the approximation error. However, choosing the
integration precision too low with respect to the splitting precision leads to
unnecessary waste of computational time as the final accuracy in such a case
will be almost solely due to the splitting error. In the above analysis, for the
larger splitting precisions the integration tolerance could have been relaxed,
reducing the time of the integration significantly without a noticeable loss of
accuracy.

4 Long term propagation of (99942) Apophis

The improvements that automated domain splitting brings into the DA-based
integration are now investigated in the practical application of long-term
propagation of uncertainties during Apophis post-encounter motion. This
test case lends itself to the automatic domain decomposition very well, as it
involves a mix of highly non-linear dynamics during the close encounters with
Earth, benign dynamics in the interim motion, and long overall integration
time scales. It thus is a hard problem to treat for uncertainty propagation
techniques.

The motion of Apophis in the Solar System is modeled including rela-
tivistic corrections to the well-known Newtonian forces. Specifically, the full
equation of motion of our model is given by

r̈ = G
∑

i

mi(ri − r)

r3i

{

1− 2(β + γ)

c2
G
∑

j

mj

rj
− 2β − 1

c2
G
∑

j 6=i

mj

rij
+

γ|ṙ|2
c2

+
(1 + γ)|ṙi|2

c2
− 2(1 + γ)

c2
ṙ · ṙi −

3

2c2

[

(r − ri) · ṙi
ri

]2

+
1

2c2
(ri − r) · r̈i

}

+ G
∑

i
mi

c2ri

{

3 + 4γ

2
r̈i +

{[r − ri] · [(2 + 2γ)ṙ − (1 + 2γ)ṙi]}(ṙ − ṙi)

r2i

}

(4)
where r is the position of Apophis in Solar System barycentric coordinates,
G is the gravitational constant; mi and ri are the mass and the Solar System
barycentric position of Solar System body i; ri = |ri−r|; c is the speed of light
in vacuum; and β and γ are the parametrized post-Newtonian parameters
measuring the nonlinearity in superposition of gravity and space curvature
produced by unit rest mass (Seidelmann, 1992).

In Eq. 4 it is assumed that the object we are integrating is affected by the
gravitational attraction of n bodies, but has no gravitational effect on them;
i.e., we are adopting the restricted (n+1)-body problem approximation. The
positions, velocities, and accelerations of the n bodies are considered as given
values, computed from the JPL DE405 ephemeris model. In our model, the
n bodies include the Sun, the planets, the Moon, as well as the asteroids
Ceres, Pallas, and Vesta. For planets with moons, with the exception of the
Earth, the center of mass of the system is considered. The dynamical model is
written in the J2000.0 Ecliptic reference frame and is commonly referred to as
the Standard Dynamical Model (Giorgini et al., 2008). This is the dynamical
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Table 2 Apophis’ equinoctial variables at 3456 MJD2000 (June 18, 2009) and as-
sociated σ values obtained from the Near Earth Object Dynamic Site in September
2009

Nom. Value σ

a 0.922438242375914 2.29775× 10−8 AU

P1 −0.093144699837425 3.26033× 10−8 –

P2 0.166982492089134 7.05132× 10−8 –

Q1 −0.012032857685451 5.39528× 10−8 –

Q2 −0.026474053361345 1.83533× 10−8 –

l 88.3150906433494 6.39035× 10−5 deg
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Fig. 8 Apophis nominal motion before and after the close encounter on April 13th,
2029.

model used by NASA/JPL for the close encounters prediction in the frame of
the Near Earth Object Program (http://neo.jpl.nasa.gov/index.html).

As illustrated in Fig. 8(a), the asteroid Apophis will have an extremely
close approach to the Earth on 13 April 2029 with a nominal closest distance
of about 3.8 · 104 km. The asteroid orbit will then suffer a large perturbation
on its orbital parameters, which will mainly affect its semimajor axis, incli-
nation, and argument of the periapsis. No appreciable effect are expected on
eccentricity and right ascension of the ascending node. The orbital period
increases from 323.60 days to 422.33 days (see Fig. 8(b) for a plot of Apophis
trajectory before and after 2029 close encounter). This opens the door to the
possibility of a resonant return to Earth in 2036.

The nominal initial state and the associated σ of Apophis at 3456 MJD2000
(June 18, 2009), expressed in equinoctial variables p = (a, P1, P2, Q1, Q2, l),
are used as our test case in the following study. More specifically, Table 2
reports the Apophis’ ephemerides derived from the observations available un-
til late 2009, excluding the recent optical and radar observations performed
from late 2011 onward. These data were obtained by accessing the Near Earth
Object Dynamic Site (http://newton.dm.unipi.it/neodys) in September
2009.

http://neo.jpl.nasa.gov/index.html
http://newton.dm.unipi.it/neodys
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(c) April 3rd, 2030 (11050 MJD2000).
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Fig. 9 Propagation of Apophis’ uncertain initial conditions.

The nonlinearities of the close encounter and of the subsequent post-
encounter motion will make the uncertainty in the direction anti-parallel
to the Earth heliocentric motion in 2029 drastically diverge in subsequent
epochs. This is clearly illustrated in Fig. 9: the uncertain conditions of Table
2 are first propagated to epoch 10550 MJD2000 (before the close encounter)
by sampling the edges of the 3σ uncertainty set with 2000 points and carrying
out the associated pointwise integrations (see Fig. 9(a)). The integration of
Apophis’s motion is then continued to include the post-encounter motion.
The resulting sets of final positions are illustrated in Figs. 9(b) to 9(d). As
can be seen, the uncertainty set tends to quickly spread along the orbit due
to the perturbations induced by the close encounter and reaches a size on
the order of 0.5 AU.

The performances of the standard DA-based integrator are assessed first.
Apophis’ initial conditions in Table 2 are initialized as DA variables, con-
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Table 3 Maximum position error of a single 9th order Taylor representation of the
flow of Apophis’ dynamics over the initial uncertainty set of Table 2 for different
epochs

Epoch [MJD2000] Epoch [date] Max. error [AU]

10550 19 Nov 2028 0.5 · 10−11

12800 17 Jan 2035 0.5 · 10−6

12825 11 Feb 2035 0.1 · 10−5

12850 8 Mar 2035 0.8 · 10−3

12875 2 Apr 2035 0.5 · 10−2

12900 27 Apr 2035 0.2 · 10−1

verted into cartesian coordinates using the relations given in (Battin, 1999),
and then numerically propagated. Table 3 reports the maximum position er-
ror of a 9th order Taylor representation of the flow at the corners of the initial
set, with respect to the pointwise integration of the same points. The errors
are computed for increasing epochs. The table shows that a single Taylor
polynomial of relatively high order cannot track uncertainties with sufficient
accuracy for practical applications such as impact probability computation.
In fact, already long before the resonant return in 2036, the accuracy of the
single DA propagation becomes so low as to be practically useless for any
sort of analysis or estimate.

Following this quick test of the dynamical behavior of the system, au-
tomatic domain splitting is enabled to treat the non-linearities in order to
improve the accuracy of the standard DA-based integration. The initial con-
ditions of Table 2 are propagated until May 1st, 2038 (14000 MJD2000),
which includes the resonant return of 2036. A 9th order integration is per-
formed and the integrator settings have been tuned to split the initial domain
so to meet the requirement of tracking the uncertainties with an accuracy of
the order of 10−9 AU and 10−9 AU/day for the asteroid position and velocity,
respectively.

In order to limit the number of generated polynomials and associated sub-
sets, domain splitting is disabled on any set whose volume is less than 2−12

times that of the initial domain. That is, any set is split at most 12 times.
Instead of splitting a set further, integration is stopped at the attempt to
perform a 13th split and the resulting polynomial expansion is saved as ”in-
complete”. These incomplete polynomials are later treated separately in the
analysis of the results. This limit was introduced to reduce the computa-
tional time for this exploratory work, enabling us to perform a relatively
quick parametric analysis of the integrator performances. The limit can be
relaxed or entirely removed in future in-depth work, especially considering
that automatic domain splitting can take advantage of parallelization.

Figure 10(a) plots the results obtained until April 27th, 2035 (12900
MJD2000) in terms of Apophis’ distance from Earth. The solid lines rep-
resent the trajectories followed by the center points of each set, whereas the
lower and upper bounds of Earth’s distance over the entire uncertainty set
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Fig. 10 Earth distance profiles resulting from the propagation of the initial un-
certainty set of Table 2.

are given by the grey band. As can be seen, the integrator is able to prop-
agate uncertainties using only one 9th order Taylor polynomial until March
3rd, 2034 (12490 MJD2000), far past the first close encounter of 2029. At this
point the nonlinearities over the now relatively large uncertainty set prevent
the integrator from meeting the accuracy requirements. Thus, a first split
occurs in the semimajor-axis direction, which causes the initial domain to
split into two sets with distinct Earth distances of their center points. The
resulting two polynomials are propagated forward in time and only one addi-
tional split occurs before epoch 12700 MJD2000. The perturbation induced
by the close encounter intensifies the nonlinearities and causes a significant
number of splits to cascade from the three sets.
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Table 4 The average number of splits performed in each direction computed over
all final sets at the end of the integration

Direction a P1 P2 Q1 Q2 l

# of splits 5.9 0 1.8 0.9 0 2.9

The number of splits drastically increases in subsequent epochs. This is
clearly illustrated in Fig. 10(b), which reports the results obtained until the
final epoch 14000 MJD2000. The figure shows that most splits tend to occur
when the trajectories get close to Earth. This is expected as Earth’s grav-
itational perturbation is maximized there, resulting in strongly non-linear
dynamics. The final number of generated domains is 2497, whereas the asso-
ciated computational time is 28.13 hr on a single 3.7 GHz Intel Core i7-4820K
CPU. It is worth highlighting that not all domains reach the final epoch: this
is due to the minimum allowed domain size we chose as described above.
Once a domain of minimum size can no longer be propagated without failing
to meet the accuracy requirements, its integration is stopped.

It is worth comparing the computational time required by the proposed
method with the one of a classical pointwise integration. The pointwise prop-
agation of Apophis motion from 3456 MJD2000 to 14000 MJD2000 takes an
average of 50 s on the same machine. The ratio between the two computa-
tional times shows that the breakeven point between the proposed approach
and a classical pointwise Monte Carlo method occurs for the propagation
of a set of two thousand initial conditions, which are not sufficient to accu-
rately represent the statistics of typical resonant returns. In addition, DA
propagation with automatic domain splitting can be implemented to make
use of parallelization techniques as, after splitting, each split box is propa-
gated independently of all the others. Propagating several boxes in parallel
can provide large savings in computational time. In comparison, to achieve
similar results, classical pointwise Monte Carlo simulations would have to be
run on massively parallel clusters with tens of thousands of cores.

Most domains do indeed reach the minimum domain size, the average
number of total splits for the final domains is 11.7. To analyze the splits
more in depth, we report the average number of splits along each direction
over all of the final domains in Table 4. Evidently, most splits during the
integration occur in the semimajor axis and the true longitude directions,
while P1 and Q2 are, in fact, never split. Thus without further analysis of the
actual numerical results, the splitting information alone already reveals that
the maximum sensitivity in the initial condition is in the a and l direction.

Consequently, even though the entire integration was performed using
a full six dimensional initial condition box, we focus our analysis on the
dynamics in the projection onto the a, l-plane of initial condition. Figure 11
shows this projection of the initial uncertainty set onto the a, l-plane along
with all the resulting subdomains created during the propagation. This figure
represents a precious source of information on the dynamics of the system.
Regions of larger final domains can be easily distinguished from those areas
where most splits occur causing the resulting sets to be smaller.
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Fig. 11 Final subdomains of the initial domain in the a, l-plane.

As explained in the previous sections, splits occur when the nonlinearities
are too strong to be managed with a single Taylor polynomial. Therefore, the
areas in Fig. 11 where most splits concentrate coincide with regions of strong
nonlinearity, a strong indicator of chaotic behavior. The size of a box of initial
conditions can be inversely related to the local expansion rate of the phase
space of the system. The smaller the initial condition box must be split, the
more expansive the dynamics dynamics are acting on this set of initial con-
ditions. Intuitively, these regions are recognized to include initial conditions
that attain the closest distances from Earth during their propagation. This
conjecture is confirmed by Fig. 12, which superimposes a color map on Fig.
11.

The color map shown in Fig. 12 illustrates the final epoch reached by each
set at the end of its propagation either because it reached the final epoch
or the minimum size. As can be seen, the regions of larger domains in Fig.
11 match the black areas in Fig. 12. This means that larger sets smoothly
propagate until the final time. Consequently, all the initial conditions lying
within have no risk to impact Earth until the final epoch. On the other hand,
the propagation of smaller sets tends to stop before 14000 MJD2000. This
means that smaller domains and the associated colored areas might contain
risky initial conditions and deserve additional analysis. Thus, Fig. 12 allows
astrodynamicists to rule out the possibility of impacts from the black areas
and can be used to estimate at least an upper bound for impact probability.

Additionally, the two distinct regions of different colors visible in Fig. 12
provide valuable information on the resonances. More specifically, moving
from the left to the right side of the figure, the prevalent color of the first
colored area indicates that the integration of most sets there stops around
2036. Similarly, the colors of the second area indicate that the integration
of the associated sets are truncated around the year 2037. Consequently, the
colored areas clearly mark the regions of possible resonances between Earth
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Fig. 12 Color map superimposed to the final subdomains in the initial domain in
the a, l-plane: final integration time.

and Apophis: the initial conditions lying in the first and second colored areas
can result in possible impacts in 2036 and 2037 respectively.

All three areas, black, blue, and red, each exhibit a distinct dynamical
behavior; furthermore the blue band serves as a separatrix between the two
black regions. This observation is confirmed in Fig. 13(a) and 13(b). Sample
initial conditions are taken from each of the four main areas of Fig. 11 as illus-
trated in Fig. 13(a). The resulting distance profiles are plotted in Fig.13(b):
initial conditions (2) and (4) lying in the black areas show safe distances from
Earth throughout the entire integration, whereas initial conditions (1) and
(3) exhibit close encounters with Earth around the time of the associated
resonance epoch.

One last result deserves to be mentioned. The initial conditions of Table 2
are derived from the observations available until late 2009. They allowed us to
illustrate the advantages and potential of DA-based automatic domain split-
ting. In the meanwhile, additional optical and radar observations have been
made available (see http://neo.jpl.nasa.gov/apophis/). Thanks to the
new observations, more accurate initial conditions are available to astrody-
namicists. Table 5 reports Apophis’ ephemerides on July 5th, 2009 (3473.5
MJD2000) including all recent optical and radar observations. These data
were obtained by accessing the Near Earth Object Dynamic Site in October
2013.

As illustrated in Table 5, recent observations allowed the standard de-
viation to be considerably reduced with respect to the previously avail-
able data (see Table 2). A 9th order DA-based integration of the new ini-
tial conditions reported in Table 5 shows that these new initial conditions
can be smoothly propagated until the final epoch 14000 MJD2000 with-
out requiring any split of the initial domain. Figure 14 reports the dis-

http://neo.jpl.nasa.gov/apophis/
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Fig. 13 Analysis for four dynamical areas of Fig. 12.

tance profile associated to the new initial conditions. This matches the dis-
tances of closest approach reported in the Near Earth Object Dynamic Site
(http://newton.dm.unipi.it/neodys) and NASA’s Jet Propulsion Labo-
ratory website (http://neo.jpl.nasa.gov/apophis/). In order to compare
where these new initial conditions lie with respect to the old ones, we prop-
agated the initial conditions of Table 5 backward to epoch 3456 MJD2000.
Figure 14(a) shows the result superimposed on Fig. 12. As expected, the new
initial conditions and their associated uncertainties form essentially a single
point within the figure, located entirely within one of the black areas. This
result further confirms that Apophis’ impact in 2036 can be ruled out.

http://newton.dm.unipi.it/neodys
http://neo.jpl.nasa.gov/apophis/


25

Table 5 Apophis’ equinoctial variables at 3473.5 MJD2000 (July 5, 2009) and as-
sociated σ values obtained from the Near Earth Object Dynamic Site in September
2013

Nom. Value σ

a 0.922443731280282 9.58934× 10−11 AU

P1 −0.093137787707699 4.21204× 10−9 –

P2 0.166984258496493 5.01301× 10−9 –

Q1 −0.012032702063741 6.35114× 10−9 –

Q2 −0.026474187976460 4.69853× 10−9 –

l 107.7856397515106 7.35568× 10−7 deg

5 Conclusion

This paper introduced the automatic domain splitting technique into the
classical high order Differential Algebra based integration with the goal of
accurately propagating large sets of uncertainties in highly nonlinear dy-
namics and long term integrations. The resulting propagation algorithm au-
tomatically splits the initial uncertainty domain into subdomains during the
integration when the polynomial expansions representing the current state
do not meet a predefined accuracy requirement. The final result is a list
of final state polynomials, each describing the evolution of some automati-
cally determined subset of the initial condition. Thus, altogether, the Taylor
polynomials accurately map the entire initial domain into the final set.

The performance of the splitting integrator has been assessed by apply-
ing it to the propagation of asteroid (99942) Apophis post-encounter motion.
In order to limit the number of generated subdomains and polynomials, a
minimum domain size was fixed. Consequently, not all subdomain achieved
the final integration time. It has been shown that these sets correspond to
regions of strong nonlinearity in the dynamics, which are automatically iden-
tified by the integration algorithm. Each of the identified regions, in the case
of Apophis, has been matched to regions where risky close encounters can
either be ruled out or are possible.
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