1,882 research outputs found
Boundary conditions associated with the Painlev\'e III' and V evaluations of some random matrix averages
In a previous work a random matrix average for the Laguerre unitary ensemble,
generalising the generating function for the probability that an interval at the hard edge contains eigenvalues, was evaluated in terms of
a Painlev\'e V transcendent in -form. However the boundary conditions
for the corresponding differential equation were not specified for the full
parameter space. Here this task is accomplished in general, and the obtained
functional form is compared against the most general small behaviour of
the Painlev\'e V equation in -form known from the work of Jimbo. An
analogous study is carried out for the the hard edge scaling limit of the
random matrix average, which we have previously evaluated in terms of a
Painlev\'e \IIId transcendent in -form. An application of the latter
result is given to the rapid evaluation of a Hankel determinant appearing in a
recent work of Conrey, Rubinstein and Snaith relating to the derivative of the
Riemann zeta function
Ion distribution and ablation depth measurements of a fs-ps laser-irradiated solid tin target
The ablation of solid tin surfaces by an 800-nanometer-wavelength laser is
studied for a pulse length range from 500 fs to 4.5 ps and a fluence range
spanning 0.9 to 22 J/cm^2. The ablation depth and volume are obtained employing
a high-numerical-aperture optical microscope, while the ion yield and energy
distributions are obtained from a set of Faraday cups set up under various
angles. We found a slight increase of the ion yield for an increasing pulse
length, while the ablation depth is slightly decreasing. The ablation volume
remained constant as a function of pulse length. The ablation depth follows a
two-region logarithmic dependence on the fluence, in agreement with the
available literature and theory. In the examined fluence range, the ion yield
angular distribution is sharply peaked along the target normal at low fluences
but rapidly broadens with increasing fluence. The total ionization fraction
increases monotonically with fluence to a 5-6% maximum, which is substantially
lower than the typical ionization fractions obtained with nanosecond-pulse
ablation. The angular distribution of the ions does not depend on the laser
pulse length within the measurement uncertainty. These results are of
particular interest for the possible utilization of fs-ps laser systems in
plasma sources of extreme ultraviolet light for nanolithography.Comment: 8 pages, 7 figure
beta-decay study of Cu-77
A beta-decay study of Cu-77 has been performed at the ISOLDE mass separator
with the aim to deduce its beta-decay properties and to obtain spectroscopic
information on Zn-77. Neutron-rich copper isotopes were produced by means of
proton- or neutron-induced fission reactions on U-238. After the production,
Cu-77 was selectively laser ionized, mass separated and sent to different
detection systems where beta-gamma and beta-n coincidence data were collected.
We report on the deduced half-live, decay scheme, and possible spin assignment
of 77Cu
Type 2 diabetes risk alleles near ADCY5, CDKAL1 and HHEX-IDE are associated with reduced birthweight
Sustained correction of B-cell development and function in a murine model of X-linked agammaglobulinemia (XLA) using retroviral-mediated gene transfer
X-linked agammaglobulinemia (XLA) is a human immunodeficiency caused by mutations in Bruton tyrosine kinase (Btk) and characterized by an arrest in early B-cell development, near absence of serum immunoglobulin, and recurrent bacteria infections. Using Btk- and Tec-deficient mice (BtkTec-/-) as a model for XLA, we determined if Btk gene therapy could correct this disorder. Bone marrow (BM) from 5-fluorouracil (5FU)-treated BtkTec-/- mice was transduced with a retroviral vector expressing human Btk and transplanted into BtkTec-/- recipients. Mice engrafted with transduced hematopoietic cells exhibited rescue of both primary and peripheral B-lineage development, revocery of peritoneal B1 B cells, and correction of serum immunoglobulin M (IgM) and IgG3 levels. Gene transfer also restored T-independent type II immune responses, and B-cell antigen receptor (BCR) proliferative responses. B-cell progenitors derived from Btk-transduced stem cells exhibited higher levels of Btk expression than non-B cells; and marking studies demonstrated a selective advantage for Btk-transduced B-lineage cells. BM derived from primary recipients also rescued Btk-dependent function in secondary hosts that had received a transplant. Together, these data demonstrate that gene transfer into hematopoietic stem cells can reconstitute Btk-dependent B-cell development and function in vivo, and strongly support the feasibility of pursuing Btk gene transfer for XLA
Hierarchical model for the scale-dependent velocity of seismic waves
Elastic waves of short wavelength propagating through the upper layer of the
Earth appear to move faster at large separations of source and receiver than at
short separations. This scale dependent velocity is a manifestation of Fermat's
principle of least time in a medium with random velocity fluctuations. Existing
perturbation theories predict a linear increase of the velocity shift with
increasing separation, and cannot describe the saturation of the velocity shift
at large separations that is seen in computer simulations. Here we show that
this long-standing problem in seismology can be solved using a model developed
originally in the context of polymer physics. We find that the saturation
velocity scales with the four-third power of the root-mean-square amplitude of
the velocity fluctuations, in good agreement with the computer simulations.Comment: 7 pages including 3 figure
Study of bound states in 12Be through low-energy 11Be(d,p)-transfer reactions
The bound states of 12Be have been studied through a 11Be(d,p)12Be transfer
reaction experiment in inverse kinematics. A 2.8 MeV/u beam of 11Be was
produced using the REX-ISOLDE facility at CERN. The outgoing protons were
detected with the T-REX silicon detector array. The MINIBALL germanium array
was used to detect gamma rays from the excited states in 12Be. The gamma-ray
detection enabled a clear identification of the four known bound states in
12Be, and each of the states has been studied individually. Differential cross
sections over a large angular range have been extracted. Spectroscopic factors
for each of the states have been determined from DWBA calculations and have
been compared to previous experimental and theoretical results
- …