
ARTICLE

Type 2 diabetes risk alleles near ADCY5, CDKAL1
and HHEX-IDE are associated with reduced birthweight

E. A. Andersson & K. Pilgaard & C. Pisinger & M. N. Harder & N. Grarup & K. Færch &

P. Poulsen & D. R. Witte & T. Jørgensen & A. Vaag & T. Hansen & O. Pedersen

Received: 1 March 2010 /Accepted: 19 April 2010 /Published online: 20 May 2010
# Springer-Verlag 2010

Abstract
Aims/hypothesis The fetal insulin hypothesis suggests that
variation in the fetal genotype influencing insulin secretion
or action may predispose to low birthweight and type 2

diabetes. We examined associations between 25 confirmed
type 2 diabetes risk variants and birthweight in individuals
from the Danish Inter99 population and in meta-analyses
including Inter99 data and reported studies.
Methods Midwife records from the Danish State Archives
provided information on mother’s age and parity, as well as
birthweight, length at birth and prematurity of the newborn
in 4,744 individuals of the population-based Inter99 study.
We genotyped 25 risk alleles showing genome-wide
associations with type 2 diabetes.
Results Birthweight was inversely associated with the type
2 diabetes risk alleles of ADCY5 rs11708067 (β=−33 g
[95% CI −55, −10], p=0.004) and CDKAL1 rs7756992
(β=−22 g [95% CI −43, −1], p=0.04). The association for
the latter locus was confirmed in a meta-analysis (n=24,885)
(β=−20 g [95% CI −29, −11], p=5×10−6). The HHEX-IDE
rs1111875 variant showed no significant association among
Danes (p=0.09); however, in a meta-analysis (n=25,164)
this type 2 diabetes risk allele was associated with lower
birthweight (β=−16 g [95% CI −24, −8], p=8×10−5). On
average, individuals with high genetic risk (≥25 type 2
diabetes risk alleles) weighed marginally less at birth than
those with low genetic risk (<25 type 2 diabetes risk alleles)
(β=−35 g [95% CI −69, −2], p=0.037).
Conclusions/interpretation We report a novel association
between the fetal ADCY5 type 2 diabetes risk allele and
decreased birthweight, and confirm in meta-analyses
associations between decreased birthweight and the type 2
diabetes risk alleles of HHEX-IDE and CDKAL1. No strong
general effect on birthweight can be ascribed to the 25
common type 2 diabetes risk alleles.
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Abbreviations
CEU Centre d'Etude du Polymorphisme (Utah

residents with northern and western European
ancestry)

HOMA-B HOMA of beta cell function
MAGIC Meta-Analyses of Glucose and Insulin-

Related Traits Consortium

Introduction

Previous studies have found that reduced birthweight is
associated with impaired glucose tolerance and type 2
diabetes later in life [1, 2]. A recent meta-analysis of 14
studies demonstrated that the odds ratio of developing type
2 diabetes in adulthood is 1.47 for individuals born with
low birthweight [3]. However, the aetiopathogenic mecha-
nisms behind this association are far from elucidated. Twin
studies have indicated a non-genetic origin of the associa-
tion between birthweight and type 2 diabetes [4], and the
‘thrifty phenotype hypothesis’ suggests that poor nutritional
conditions during critical periods of fetal life alter beta cell
function and/or insulin action, thereby predisposing to type
2 diabetes in later life [2]. Insulin is important for fetal
growth and for metabolism throughout life. The ‘fetal
insulin hypothesis’ states that variation in the fetal genotype
affecting pancreatic beta cell function or insulin sensitivity
and thereby availability of insulin as a fetal growth factor
predisposes to reduced birth size and risk of type 2 diabetes
in later life [5]. This hypothesis is supported by the finding
that newborns with mutations in GCK, KCNJ11, HNF1B
and INS have marked insulin deficiency and considerably
reduced birthweight [6–9]. In contrast, newborns with
mutations in HNF4A, which also cause adult insulin
deficiency and monogenic diabetes, have a higher birth-
weight due to elevated insulin secretion by the fetus [10],
demonstrating that fetal and adult insulin secretion are not
always correlated.

Maternal blood glucose level during pregnancy is a main
determinant of fetal insulin secretion and thus fetal growth.
Maternal hyperglycaemia may lead to fetal hyperinsulinaemia
and consequently macrosomia is a well-known complication
of untreated gestational diabetes. The maternal genotype may
thereby influence fetal exposure to maternal glucose and thus
interact with the effect of fetal genotype on fetal growth and
subsequent birthweight of the newborn [6].

A total of 25 confirmed type 2 diabetes risk gene variants
have been reported [11–31]. Of these, variants in or near
NOTCH2, THADA, PPARG, ADAMTS9, IGF2BP2, CDKAL1,
JAZF1, SLC30A8, CDKN2A/B, CDC123, HHEX-IDE,
TCF7L2, KCNQ1, KCNJ11, MTNR1B, TSPAN8, GCK and

FTO have previously been investigated in relation to birth-
weight [32–36]. However, only type 2 diabetes risk variants
near HHEX-IDE and CDKAL1 have been associated with
lower birthweight [32–34]. Zhao et al. found a highly
significant effect of CDKAL1 rs7756992, but no significant
association for the HHEX-IDE variant [34]. This is in
contradiction with a Finnish cohort study, in which only an
association for the HHEX-IDE locus was observed [33];
however, another CDKAL1 variant (rs7754840) was inves-
tigated in the latter study. Type 2 diabetes risk variants near
TCF7L2 and CDKN2A/B have been associated with
increased birthweight [33, 36].

Complete consistency among previous studies has not
been achieved. Moreover, to our knowledge, five newly
identified type 2 diabetes risk variants [13] have not been
investigated in relation to fetal growth. The overall aim of
this study was therefore to investigate the association
between the 25 confirmed type 2 diabetes risk variants
and birthweight in 4,213 individuals from the Danish
Inter99 population (ClinicalTrials.gov NCT00289237)
[37]. We also examined associations between type 2
diabetes risk variants and birthweight in meta-analyses
including our own data and published studies.

Methods

Study population Individuals examined in the present study
were from the Danish Inter99 Study, which at baseline
comprised 6,784 individuals living in the region of
Copenhagen. The Inter99 is a population-based rando-
mised non-pharmacological intervention study of preven-
tion of ischaemic heart disease conducted at the Research
Centre for Prevention and Health in Glostrup, Denmark
(www.inter99.dk) [37, 38]. For 4,744 participants, mid-
wife journals were traced through the Danish State
Archives. These journals contained information on moth-
ers’ age, parity and marital status as well as birthweight,
length at birth and prematurity of the newborn. Ponderal
index was calculated as birthweight (kg)/birth length (m3).
Information about mothers’ diabetes status was obtained
by a questionnaire during the baseline visits in 1999 to
2001. The age of onset of maternal diabetes was not
registered.

Pregnancies were considered at term when gestation
attained 36 complete weeks and did not exceed 41
complete weeks. Pre-term singleton deliveries (n=446)
and individuals born from multiple pregnancies (n=85)
were excluded, since these newborns are lighter presum-
ably due to non-genetic factors. The final number of
individuals included in the study was 4,213. All individ-
uals were Danes by self-report. All participants gave
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written informed consent and the protocol was in accor-
dance with the Helsinki Declaration and approved by local
ethic committees.

Genotyping Genotyping was performed using a genotyping
device (KASPar; KBioscience, Hoddesdon, UK). All
genotyping success rates were >96% with an error rate of
<0.5%, except ADAMTS9 rs4607103, for which the error
rate was 0.9%. All genotypes obeyed Hardy–Weinberg
equilibrium in the Danish population (p>0.05) except
HHEX-IDE rs1111875 (p=0.03), TCF7L2 rs7903146 (p=
0.02), DGKB/TMEM195 rs2191349 (p=0.01) and
SLC30A8 rs13266634 (p=0.009).

Statistical analysis All statistical analyses were performed
using RGui version 2.8.1 (available at http://www.r-project.
org). The effect of the genetic variants on birthweight,
length at birth and ponderal index in the Inter99 population
was calculated using linear regression models adjusted for
sex, maternal diabetes (yes vs no/not available) and parity
(0, 1, 2, 3 or ≥4). No transformation of data was performed.
Only additive genetic models were considered assuming a
constant change in birthweight per risk allele, with p<0.05
being considered significant.

Statistical power was estimated using 1,000 simula-
tions. We used the empirical variance of the observed
traits adjusted for sex, maternal diabetes and parity to
simulate phenotypes from a normal distribution, so that
variance across genotypes is drawn from the estimated
variance. In the Danish Inter99 study, we had more than
80% statistical power to detect effects of 45 g, 35 g and
30 g, assuming minor allele frequencies of 10%, 20% and
40%, respectively.

Fixed-effect meta-analyses (up to n=25,957) were
performed using effect size estimates and standard errors
derived from linear regression analyses from this and three
other studies [32, 33, 36]. Weight of studies in the meta-
analyses was estimated using inverse variance assuming
fixed effects. Heterogeneity was measured by Q-statistics.

A combined analysis of variants within CDKAL1,
HHEX-IDE and ADCY5 loci was performed by summing
up risk alleles of the three variants, where individuals can
have from zero to six risk alleles.

Information from the 25 type 2 diabetes risk variants in
2,733 individuals with available genotype data on all 25
variants was combined into a binary risk allele score (low
vs high genetic risk). In this population, the median
number of risk alleles was 25. The combined effect was
calculated by comparing two groups according to their
number of risk alleles (low genetic risk, i.e. <25 type 2
diabetes risk alleles, n=1,366 vs high genetic risk, i.e. ≥25
type 2 diabetes risk alleles, n=1,367). In the combined

analyses similar (fixed) effects of the variants were
assumed.

Results

Quantitative analyses of birthweight in the Danish Inter99
population Characteristics of the Inter99 participants are
shown in Electronic supplementary material [ESM] Table 1.
The 25 confirmed type 2 diabetes risk variants were
investigated for an association with birthweight in 4,213
individuals from the Danish Inter99 population and the
results of the quantitative analyses are shown in Table 1.
The risk allele of rs11708067 at the ADCY5 locus was
associated with a reduction in birthweight (per allele
β=−33 g [95% CI −55, −10], p=0.004) (Table 1). Also
carriers of the CDKAL1 rs7756992 risk allele had lower
birthweight (per allele β=−22 g [95% CI −43, −1], p=0.04)
(Table 1). The risk allele of rs1111875 near HHEX-IDE
showed a tendency towards lower birthweight (per allele
β=−17 g [95% CI −36, 2], p=0.09) (Table 1). ADCY5
rs11708067 was also associated with a slightly decreased
ponderal index (per allele β=−0.1 kg/m3 [95% CI −0.2,
−0.02], p=0.02) (Table 2), while CDKAL1 rs7756992 was
associated with reduced birth length (−0.1 cm [95% CI
−0.2, −0.01], p=0.04) (Table 2). The risk allele of WFS
rs10010131 showed a trend towards higher birthweight (per
allele β=19 g [95% CI −1, 39], p=0.06) (Table 1). In the
Inter99 study population, none of the associations remained
significant after correction for multiple testing.

Meta-analyses Meta-analyses including previously pub-
lished data on type 2 diabetes loci in relation to birthweight
were performed for CDKAL1 (n=24,885), HHEX-IDE (n=
25,164), TCF7L2 (n=19,745), SLC30A8 (n=24,908),
IGF2BP2 (n=24,393), CDKN2A/B (n=25,957), PPARG
(n=6,206), KCNJ11 (n=6,206) and JAZF1 (n=6,206) [32,
33, 36]. No data were available for the remaining variants.

In the meta-analysis of CDKAL1, three different proxies
in linkage disequilibrium (HapMap Centre d'Etude du
Polymorphisme [Utah residents with northern and western
European ancestry] [CEU] r>0.67) were used (rs7756992,
rs10946398 and rs7754840). Type 2 diabetes risk variants
within the CDKAL1 locus were associated with reduced
birthweight in a fixed-effect meta-analysis (per allele
β=−20 g [95% CI −29, −11], p=5×10−6) (Fig. 1).
Likewise, the HHEX-IDE rs1111875 type 2 diabetes risk
allele was associated with reduced birthweight (per allele
β=−16 g [95% CI −24, −8], p=8×10−5) (Fig. 2).

No other published type 2 diabetes variants were
associated with reduced birthweight in our meta-analyses
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(ESM Fig. 1). However, fetal TCF7L2 rs7903146 and
CDKN2A/B rs10811661 type 2 diabetes risk alleles were
associated with slightly increased birthweight (ESM
Fig. 1a, f). No heterogeneity was observed in any of the
meta-analyses (p>0.2).

Combined effect of HHEX-IDE, CDKAL1 and ADCY5 type
2 diabetes risk alleles on birthweight Information from the
CDKAL1, HHEX-IDE and ADCY5 variants in the Danish

population was combined into a fetal risk allele score (0–6
risk alleles) and the association with birthweight was tested.
This analysis showed an average birthweight difference of
−22 g [95% CI −34, −10], p=0.0003 per risk allele (Fig. 3).
The 14% of the examined Inter99 population carrying five
to six risk alleles weighed on average 110 g [95% CI 42,
179] less than the 6% carrying zero to one risk alleles. In
combined analyses, the three variants were also associated
with modest decreases in birth length and ponderal index

Table 1 Linear regression analyses of fetal genotype and birthweight in 4,213 individuals from the Danish Inter99 study population

Type 2 diabetes risk Mean birthweight (g)a per genotype (number of T2D
risk alleles)

Effect

Risk variantb Allele frequency 0 1 2 Per T2D risk allele (g)c p valued

Beta cell dysfunction

KCNJ11 rs5219 0.37 3,502±459 3,478±441 3,498±449 −5 (−25, 15) 0.62

TCF7L2 rs7903146 0.27 3,495±453 3,481±441 3,487±453 −8 (−29, 13) 0.45

IGF2BP2 rs4402960 0.30 3,484±448 3,491±442 3,500±475 3 (−17, 24) 0.75

WFS1 rs10010131 0.58 3,470±478 3,491±453 3,502±432 19 (−1, 39) 0.062

SLC30A8 rs13266634 0.68 3,534±444 3,477±444 3,488±454 −14 (−34, 6) 0.17

CDC123 rs12779790 0.19 3,486±444 3,498±458 3,466±465 4 (−20, 28) 0.75

TSPAN8 rs7961581 0.27 3,483±442 3,494±455 3,487±472 13 (−9, 34) 0.25

KCNQ1 rs2237895 0.41 3,489±442 3,489±457 3,490±444 −6 (−25, 14) 0.59

MTNR1B rs10830963 0.27 3,486±448 3,488±447 3,511±466 9 (−13, 30) 0.43

GCK rs1799884 0.16 3,492±452 3,482±443 3,496±471 −9 (−35, 17) 0.50

DGKB rs2191349 0.51 3,467±442 3,491±443 3,498±462 13 (−6, 32) 0.17

PROX1 rs340874 0.54 3,491±429 3,498±455 3,470±453 −13 (−32, 6) 0.19

HHEX-IDE rs1111875 0.59 3,514±454 3,484±445 3,483±452 −17 (−36, 2) 0.088

CDKAL1 rs7756992 0.28 3,498±451 3,483±442 3,462±4586 −22 (−43, −1) 0.044

CDKN2A/2B rs10811661 0.83 3,476±418 3,498±460 3,486±445 −2 (−28, 24) 0.88

TCF2 rs7501939 0.41 3,495±447 3,482±452 3,498±443 −4 (−24, 15) 0.66

JAZF1 rs864745 0.51 3,465±448 3,505±449 3,482±452 8 (−11, 28) 0.39

Insulin resistance

GCKR rs780094 0.65 3,460±438 3,499±450 3,486±451 7 (−13, 27) 0.50

PPARG rs1801282 0.87 3,421±401 3,486±453 3,492±450 12 (−16, 40) 0.41

IRS1 rs2943641 0.62 3,494±441 3,494±447 3,481±453 −8 (−27, 12) 0.43

ADAMTS9 rs4607103 0.78 3,519±442 3,474±457 3,495±445 6 (−17, 29) 0.62

Obesity

FTO rs8050136 0.41 3,490±442 3,484±455 3,501±449 5 (−15, 24) 0.63

Unknown

NOTCH rs10923931 0.10 3,485±447 3,505±457 3,439±414 9 (−23, 42) 0.57

THADA rs7578597 0.90 3,541±526 3,501±436 3,485±450 −23 (−54, 9) 0.15

ADCY5 rs11708067 0.76 3,543±438 3,500±452 3,476±450 −33 (−55, −10) 0.0040

aMeans ± SD stratified by fetal type 2 diabetes risk genotypes
b Grouped according to their assumed phenotypical effect
c Effect in grams (95% CI)
d Bonferroni threshold for 25 test was p<0.002; effects and p values were calculated assuming an additive genetic model adjusted for sex, maternal diabetes
status and parity

T2D, type 2 diabetes
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(per allele: β=−0.07 cm [95% CI −0.12, −0.01], p=0.01
and β=−0.07 kg/m3 [95% CI −0.13, 0.00], p=0.04,
respectively).

Combined analyses of effect of 25 type 2 diabetes risk
alleles on birthweight To estimate the effect of carrying a
high vs low load of risk alleles, a combined analysis of all
25 variants was performed. Information from the 25 type 2
diabetes risk variants was combined into a binary risk allele

score (low vs high genetic risk) and plotted against
birthweight (Fig. 4). The association with birthweight was
tested. Individuals with a high risk allele score (≥25 type 2
diabetes risk alleles) were on average slightly lighter than
individuals with a low risk allele score (<25 type 2 diabetes
risk alleles) (β=−35 g [95% CI −69, −2], p=0.037). A
similar analysis excluding the HHEX-IDE, CDKAL1 and
ADCY5 variants failed to reveal a significant effect
(β=−24 g [95% CI −56, 9], p=0.16).

Discussion

Our analysis of the fetal genotype of 25 type 2 diabetes risk
variants showed a novel association between ADCY5
rs11708067 risk allele and birthweight, with a 33 g
reduction in birthweight per risk allele. Although this novel
finding does not withstand correction for multiple testing in
the Inter99 study population, independent statistical
evidence for this locus was provided by Freathy et al. at
the ASHG meeting 2009 [39]. Moreover, in meta-analyses
we confirmed that the risk-conferring alleles at CDKAL1
and HHEX-IDE loci are associated with lower birthweight.
Finally, we showed that no strong general effect on
birthweight can be ascribed to the 25 type 2 diabetes risk
alleles confirmed as of today. Our study thus adds
important knowledge to current understanding of the effect
of genes on birthweight and subsequent development of
type 2 diabetes.

As fetal insulin is a crucial fetal growth factor, the ‘fetal
insulin hypothesis’ suggests that genetic variants predis-

Table 2 Quantitative linear regression analyses of fetal genotype, and ponderal index and birth length in 4,213 individuals from the Danish
Inter99 population

T2D risk Value per genotype (number of T2D risk alleles)a Effectb

Risk variant Allele frequency 0 1 2 Per T2D risk allele p valuec

Mean PI (kg/m3)

ADCY5 rs11708067 0.76 25.0±2.3 24.8±2.3 24.7±2.3 −0.1 (−0.2, −0.02) 0.024

HHEX rs1111875 0.59 24.9±2.3 24.8±2.2 24.8±2.3 −0.05 (−0.2, 0.04) 0.28

CDKAL1 rs7756992 0.28 24.8±2.3 24.8±2.3 24.7±2.3 −0.02 (−0.1, 0.09) 0.78

Mean BL (cm)

ADCY5 rs11708067 0.76 52.1±1.8 52.0±1.9 52.0±1.9 −0.08 (−0.17 0.02) 0.12

HHEX rs1111875 0.59 52.1±2.0 52.0±1.9 52.0±1.9 −0.04 (−0.12, 0.04) 0.31

CDKAL1 rs7756992 0.28 52.0±1.9 52.0±1.9 51.9±1.9 −0.10 (−0.19, −0.01) 0.036

Data are stratified according to fetal type 2 diabetes risk genotypes of ADCY5, HHEX and CDKAL1
a In kg/m3 for PI, in cm for BL, mean ± SD
b In kg/m3 for PI, in cm for BL effect (95% CI)
cBonferroni threshold for 6 test was p<0.0083; effects and p values were calculated assuming an additive genetic model adjusted for sex, maternal diabetes
status and parity

BL, birth length; PI, ponderal index; T2D, type 2 diabetes

−40 −20 0 20 40

Our study

HBCS [33] 

ALSPAC [32]

EFSOCH [32]

NFBC1996 [32]

1958BC [32]

Fixed effect model

Fig. 1 Meta-analysis of HHEX-IDE rs1111875 fetal genotype and
birthweight including up to 25,164 European individuals. Effect size
estimates and standard errors obtained from previous published
studies [32, 33] and the present study were combined in a meta-
analysis using the inverse variance method. Black diamond, combined
change in birthweight per fetal risk allele (β=−16 g [95% CI −24, −8],
p=8×10−5); black squares, effects in single studies sized according to
their weight in the meta-analysis
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posing to decreased insulin secretion or action causes
reduced intrauterine growth and thereby lower birthweight
as well as late-onset type 2 diabetes [5]. This hypothesis
assumes that insulin deficiency is already present during
fetal life. Indeed, the birthweight-lowering alleles of
CDKAL1 and HHEX-IDE predispose to type 2 diabetes
due to reduced insulin secretion and beta cell dysfunction
[11, 40]. The associations with lower birthweight for these
two loci therefore support the ‘fetal insulin hypothesis’ by

indicating that beta cell dysfunction may already be present
in pre-natal life. This contrasts with other type 2 diabetes
risk alleles that are also believed to increase susceptibility
to type 2 diabetes through decreased beta cell function, but
which were not found to have a decreasing effect on
birthweight by us and others [32–34, 36]. No strong
phenotype related to beta cell function has been reported
for variants at the ADCY5 locus [13]; therefore the
mechanism by which the ADCY5 risk allele decreases
birthweight and increases the risk of type 2 diabetes may be
different. Interestingly, the ADCY5 variant, but not the
HHEX-IDE or CDKAL1 variant, was also significantly
associated with a lower ponderal index, indicating that
newborns with the ADCY5 variant had disproportional
intrauterine growth. Thinness at birth, as reflected by a
lower ponderal index, has been related to insulin resistance
and type 2 diabetes later in life [41]. The CDKAL1 locus
was significantly associated with reduced birth length,
while ADCY5 and HHEX-IDE loci were not. These
heterogeneous associations for the three loci could indicate
differential effects, but may also be due to study sample
size and thereby to lack of statistical power.

The ADCY5 locus was initially identified in a large meta-
analysis of fasting plasma glucose levels, including data
from 21 genome-wide association studies conducted by the
Meta-Analyses of Glucose and Insulin-Related Traits
Consortium (MAGIC) investigators [13, 31]. The intronic
rs11708067 variant was associated with increased fasting
plasma glucose levels (0.027 mmol/l, p=1.7×10−14) and
risk of type 2 diabetes (OR 1.12, p=9.9×10−21) at a
genome-wide level [13]. In the same study, the rs11708067
risk allele was also associated with decreased HOMA of
beta cell function (HOMA-B) (p=3.6×10−8) but not with
HOMA of insulin resistance (p=0.16). Simultaneously, a
large meta-analysis undertaken by MAGIC investigators on
post-OGTT values identified the ADCY5 locus to be
associated with increased 2 h plasma glucose (0.09 mmol/
l, p=4.2×10−16) [31]. This association was reported with
another single nucleotide polymorphism (rs2877716) in
strong linkage disequilibrium with rs11708067 (HapMap
CEU population r2=0.82). The rs2877716 variant was also
associated with lower 2 h serum insulin levels adjusted for
2 h plasma glucose levels (p=1.43×10−6), but not with the
insulinogenic index or AUC for insulin and glucose (p>
0.1) [31]. As variation in ADCY5 is associated with higher
fasting and 2 h plasma glucose levels, as well as with lower
HOMA-B and 2 h serum insulin levels in non-diabetic
individuals, the ADCY5 variants may predispose to type 2
diabetes and low birthweight through an effect on insulin
secretion rather than through insulin resistance. During
revision of this manuscript Freathy et al. reported a meta-
analysis of genome-wide association studies followed by
replication studies showing that the C allele of rs9883204
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Fig. 3 The association between birthweight and the number of fetal
type 2 diabetes risk alleles at CDKAL1 (rs7756992), HHEX-IDE
(rs1111875) and ADCY5 (rs11708067) in the Danish Inter99 popula-
tion (n=4,213). Raw birthweight data (mean, SD) were plotted
according to the number of risk alleles. Analyses were performed by
summing up risk alleles assuming an additive genetic model adjusted
for sex, maternal diabetes status and parity. Effect per allele: β=−22 g
(95% CI −34, −10), p=3×10−4

−40 −20 0 20 40

Our study

HBCS [33]

ALSPAC [32]

EFSOCH [32]

NFBC1996 [32]

1958BC [32]

Fixed effect model

Fig. 2 Meta-analysis of CDKAL1 fetal genotype and birthweight
including 24,885 European individuals. Effect size estimates and
standard errors obtained from previous published studies [32, 33] and
the present study were combined in a meta-analysis using the inverse
variance method. Three different proxies rs7756992 (present study),
rs7754840 [33] and rs10946398 [32] in linkage disequilibrium
(HapMap CEU r>0.67) were used. Black diamond, combined change
in birthweight per fetal risk allele (β=−20 g [95% CI −29, −11], p=
5×10−6); black squares, effects in single studies sized according to
their weight in the meta-analysis
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in ADCY5 in linkage disequilibrium with rs11708067
(HapMap CEU phase III r2=0.72) was associated with
lower birthweight (p=7×10−15) [42].

ADCY5 is expressed in multiple tissues including the
pancreatic islets and beta cells, but with the highest
expression levels observed in the heart and brain [13, 43].
ADCY5 (also known as AC5) encodes adenylate cyclase 5
(ADCY5), which catalyses generation of cyclic AMP.
ADCY5 may be involved in insulin release, since cyclic
AMP mediates activation of protein kinase A, which
induces calcium influx, subsequent insulin secretion and
transcription of the proinsulin gene [44]. Interestingly,
Adcy5-knockout mice live significantly longer than control
mice [45]. This has been proposed to be due to a protective
effect on the heart, where disruption of ADCY5 inhibits
cardiac apoptosis and thereby protects against pressure
overload and oxidative stress [45, 46]. From these
observations, it could be speculated that ADCY5 may also
be involved in apoptosis of beta cells, possibly leading to
decreased beta cell mass and decreased insulin-secreting
capacity. This scenario could explain the associations with
type 2 diabetes and low birthweight.

In the Danish Inter99 population as such, we were only
able to show significant associations for the CDKAL1 and
ADCY5 loci. In the present meta-analyses, we confirmed
the associations with decreased birthweight for the HHEX-
IDE and CDKAL1 loci. The lack of significant association
for the HHEX-IDE variant in the Inter99 population may be
due to insufficient statistical power, if the variant has a
less pronounced impact on birthweight, as suggested
previously [34]. In meta-analyses we also observed that
fetal TCF7L2 rs7903146 and CDKN2A/B rs10811661 risk
alleles were associated with slightly increased birthweight.

Mother–offspring pair analyses have previously shown
that this effect of the TCF7L2 risk allele is merely a
reflection of the maternal genotype effect, which is
observed because maternal and fetal genotypes are 50%
correlated [36]. A maternal type 2 diabetes risk genotype
may predispose to increased birthweight due to a predispo-
sition towards increased glucose levels during pregnancy.
The same explanation could account for the reported
association between the CDKN2A/B risk allele and increased
birthweight.

Although the individual effects of the three type 2
diabetes risk variants on birthweight are relatively small,
combined additive analyses of CDKAL1, HHEX and
ADCY5 showed a mean birthweight reduction of 110 g
for carriers of five or six risk alleles compared with carriers
of zero or one risk alleles. This magnitude can be compared
with the impact of mothers smoking four additional
cigarettes per day during third trimester of pregnancy [47].

The combined analysis of all 25 type 2 diabetes risk
variants showed that individuals belonging to the high-risk
group weighed marginally less than individuals belonging
to the low-risk group. No significant effect was observed
when excluding HHEX-IDE, CDKAL1 and ADCY5 from
the analysis. This indicates that no strong general effect on
birthweight can be ascribed to these 25 risk alleles.
Together with the single variant analyses, the results from
the combined analyses suggest that for some of the variants
insulin deficiency and/or resistance may only be present
later in life, while for others the defect may already be
noticeable in pre-natal life. However, concordance between
maternal and fetal genotypes may potentially offset the
impact of fetal risk alleles, because mothers of newborns
with a high number of risk alleles are likely to have a high
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number of risk alleles themselves, making them more
susceptible to hyperglycaemia during pregnancy. Interest-
ingly, none of the variants associated with insulin resistance
seem to be associated with low birthweight. The 25 type 2
diabetes variants examined in the present study explain
only ∼2% of the total variation in birthweight. The
heritability of birthweight is 38%, as estimated in a Danish
population-based twin cohort [48], suggesting that multiple
additional genetic variants are likely to be involved. These
may include yet undiscovered low-frequency variants
overlapping with variants involved in type 2 diabetes
pathogenesis, as well as variants with no influence on type
2 diabetes development. Moreover, the heritability estimate
also suggests that the variation in birthweight is largely
explained by non-genetic factors that may affect the
intrauterine environment and thereby fetal growth [4, 48].

To strengthen the analyses, we have in the present study
of Inter99 participants adjusted the analyses for sex,
maternal diabetes status and parity, since these variables
all affect birthweight in this population (personal commu-
nication, K. Pilgaard, Steno Diabetes Center, Gentofte,
Denmark). Maternal diabetes status is related to genotype
and offspring birthweight, and is therefore considered a
confounding factor. In this study parental diabetes status
was assessed through a questionnaire and age of onset was
not reported, which is a limitation. However, higher
birthweight in newborns whose mothers develop diabetes
at some point in adult life has been reported [49]. This
observation is probably explained by maternal hyperglycae-
mia during pregnancy, masking genetic effects working in
the opposite direction and making it important to adjust for
this confounder. However, adjusting for maternal diabetes
status assessed several years after the pregnancy may not
sufficiently account for the total effect of gestational hyper-
glycaemia, so we may have underestimated the effect of type
2 diabetes gene variants on birthweight in this study.

Another limitation of this study is the lack of exact
information regarding gestational age between weeks 37
and 42. However, none of the investigated variants have to
our knowledge been associated with gestational age and
thus an even genotype distribution can be presumed. In
addition, we do not have information on parental genotypes
and could not therefore exclude a parental genotype effect.

In conclusion, we report a novel association with
decreased birthweight in carriers of the ADCY5 type 2
diabetes risk allele. We also confirm associations with
lower birthweight for the HHEX-IDE and CDKAL1 type 2
diabetes risk alleles in large meta-analyses.
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