31 research outputs found
Design, construction and commissioning of the Braunschweig Icing Wind Tunnel
Beyond its physical importance in both fundamental and climate research, atmospheric icing is considered as a severe operational condition in many engineering applications like aviation, electrical power transmission and wind-energy production. To reproduce such icing conditions in a laboratory environment, icing wind tunnels are frequently used. In this paper, a comprehensive overview on the design, construction and commissioning of the Braunschweig Icing Wind Tunnel is given. The tunnel features a test section of 0.5âŻmâŻâĂââŻ0.5âŻm with peak velocities of up to 40âŻmâŻsâ1. The static air temperature ranges from â25 to +30âŻÂ°C. Supercooled droplet icing with liquid water contents up to 3âŻgâŻmâ3 can be reproduced. The unique aspect of this facility is the combination of an icing tunnel with a cloud chamber system for making ice particles. These ice particles are more realistic in shape and density than those usually used for mixed phase and ice crystal icing experiments. Ice water contents up to 20âŻgâŻmâ3 can be generated. We further show how current state-of-the-art measurement techniques for particle sizing are performed on ice particles. The data are compared to those of in-flight measurements in mesoscale convective cloud systems in tropical regions. Finally, some applications of the icing wind tunnel are presented
ESA's wind Lidar mission ADM-AEOLUS; on-going scientific activities related to calibration, retrieval and instrument operation
The Earth Explorer Atmospheric Dynamics Mission
(ADM-Aeolus) of ESA will be the first-ever satellite to
provide global observations of wind profiles from
space. Its single payload, namely the Atmospheric
Laser Doppler Instrument (ALADIN) is a directdetection
high spectral resolution Doppler Wind Lidar
(DWL), operating at 355 nm, with a fringe-imaging
receiver (analysing aerosol and cloud backscatter) and a
double-edge receiver (analysing molecular backscatter).
In order to meet the stringent mission requirements on
wind retrieval, ESA is conducting various science
support activities for the consolidation of the on-ground
data processing, calibration and sampling strategies.
Results from a recent laboratory experiment to study
Rayleigh-Brillouin scattering and improve the
characterisation of the molecular lidar backscatter
signal detected by the ALADIN double-edge Fabry-
Perot receiver will be presented in this paper. The
experiment produced the most accurate ever-measured
Rayleigh-Brillouin scattering profiles for a range of
temperature, pressure and gases, representative of
Earthâs atmosphere. The measurements were used to
validate the Tenti S6 model, which is implemented in
the ADM-Aeolus ground processor.
First results from the on-going Vertical Aeolus
Measurement Positioning (VAMP) study will be also
reported. This second study aims at the optimisation of
the ADM-Aeolus vertical sampling in order to
maximise the information content of the retrieved
winds, taking into account the atmospheric dynamical
and optical heterogeneity. The impact of the Aeolus
wind profiles on Numerical Weather Prediction (NWP)
and stratospheric circulation modelling for the different
vertical sampling strategies is also being estimated
Cleaner burning aviation fuels can reduce contrail cloudiness
Contrail cirrus account for the major share of aviationâs climate impact. Yet, the links between jet fuel composition, contrail microphysics and climate impact remain unresolved. Here we present unique observations from two DLR-NASA aircraft campaigns that measured exhaust and contrail characteristics of an Airbus A320 burning either standard jet fuels or low aromatic sustainable aviation fuel blends. Our results show that soot particles can regulate the number of contrail cirrus ice crystals for current emission levels. We provide experimental evidence that burning low aromatic sustainable aviation fuel can result in a 50 to 70% reduction in soot and ice number concentrations and an increase in ice crystal size. Reduced contrail ice numbers cause less energy deposition in the atmosphere and less warming. Meaningful reductions in aviationâs climate impact could therefore be obtained from the widespread adoptation of low aromatic fuels, and from regulations to lower the maximum aromatic fuel content
Aircraft-based observations of isoprene-epoxydiol-derived secondary organic aerosol (IEPOX-SOA) in the tropical upper troposphere over the Amazon region
During the ACRIDICON-CHUVA field project (September-October 2014;based in Manaus, Brazil) aircraft-based in situ measurements of aerosol chemical composition were conducted in the tropical troposphere over the Amazon using the High Altitude and Long Range Research Aircraft (HALO), covering altitudes from the boundary layer (BL) height up to 14.4 km. The submicron non-refractory aerosol was characterized by flash-vaporization/electron impact-ionization aerosol particle mass spectrometry. The results show that significant secondary organic aerosol (SOA) formation by isoprene oxidation products occurs in the upper troposphere (UT), leading to increased organic aerosol mass concentrations above 10 km altitude. The median organic mass concentrations in the UT above 10 km range between 1.0 and 2.5 mu g m(-3) (referring to standard temperature and pressure;STP) with interquartile ranges of 0.6 to 3.2 mu g m(-3) (STP), representing 78 % of the total submicron non-refractory aerosol particle mass. The presence of isoprene-epoxydiol-derived secondary organic aerosol (IEPOX-SOA) was confirmed by marker peaks in the mass spectra. We estimate the contribution of IEPOX-SOA to the total organic aerosol in the UT to be about 20 %. After isoprene emission from vegetation, oxidation processes occur at low altitudes and/or during transport to higher altitudes, which may lead to the formation of IEPOX (one oxidation product of isoprene). Reactive uptake or condensation of IEPOX on preexisting particles leads to IEPDX-SOA formation and subsequently increasing organic mass in the UT. This organic mass increase was accompanied by an increase in the nitrate mass concentrations, most likely due to NOx production by lightning. Analysis of the ion ratio of NO+ to NO2+ indicated that nitrate in the UT exists mainly in the form of organic nitrate. IEPOX-SOA and organic nitrates are coincident with each other, indicating that IEPDX-SOA forms in the UT either on acidic nitrate particles forming organic nitrates derived from IEPDX or on already neutralized organic nitrate aerosol particles
Enhanced activity of multiple TRICâB channels: an endoplasmic reticulum/sarcoplasmic reticulum mechanism to boost counterion currents
KEY POINTS:There are two subtypes of trimeric intracellular cation (TRIC) channels but their distinct single-channel properties and physiological regulation have not been characterized. We examined the differences in function between native skeletal muscle sarcoplasmic reticulum (SR) K+ -channels from wild-type (WT) mice (where TRIC-A is the principal subtype) and from Tric-a knockout (KO) mice that only express TRIC-B. We find that lone SR K+ -channels from Tric-a KO mice have a lower open probability and gate more frequently in subconducting states than channels from WT mice but, unlike channels from WT mice, multiple channels gate with high open probability with a more than six-fold increase in activity when four channels are present in the bilayer. No evidence was found for a direct gating interaction between ryanodine receptor and SR K+ -channels in Tric-a KO SR, suggesting that TRIC-B-TRIC-B interactions are highly specific and may be important for meeting counterion requirements during excitation-contraction coupling in tissues where TRIC-A is sparse or absent. ABSTRACT:The trimeric intracellular cation channels, TRIC-A and TRIC-B, represent two subtypes of sarcoplasmic reticulum (SR) K+ -channel but their individual functional roles are unknown. We therefore compared the biophysical properties of SR K+ -channels derived from the skeletal muscle of wild-type (WT) or Tric-a knockout (KO) mice. Because TRIC-A is the major TRIC-subtype in skeletal muscle, WT SR will predominantly contain TRIC-A channels, whereas Tric-a KO SR will only contain TRIC-B channels. When lone SR K+ -channels were incorporated into bilayers, the open probability (Po) of channels from Tric-a KO mice was markedly lower than that of channels from WT mice; gating was characterized by shorter opening bursts and more frequent brief subconductance openings. However, unlike channels from WT mice, the Po of SR K+ -channels from Tric-a KO mice increased as increasing channel numbers were present in the bilayer, driving the channels into long sojourns in the fully open state. When co-incorporated into bilayers, ryanodine receptor channels did not directly affect the gating of SR K+ -channels, nor did the presence or absence of SR K+ -channels influence ryanodine receptor activity. We suggest that because of high expression levels in striated muscle, TRIC-A produces most of the counterion flux required during excitation-contraction coupling. TRIC-B, in contrast, is sparsely expressed in most cells and, although lone TRIC-B channels exhibit low Po, the high Po levels reached by multiple TRIC-B channels may provide a compensatory mechanism to rapidly restore K+ gradients and charge differences across the SR of tissues containing few TRIC-A channels