731 research outputs found

    A stem-cell-derived platform enables complete Cryptosporidium development in vitro and genetic tractability

    Get PDF
    Despite being a frequent cause of severe diarrheal disease in infants and an opportunistic infection in immunocompromised patients, Cryptosporidium research has lagged due to a lack of facile experimental methods. Here, we describe a platform for complete life cycle development and long-term growth of C. parvum in vitro using air-liquid interface (ALI) cultures derived from intestinal epithelial stem cells. Transcriptomic profiling revealed that differentiating epithelial cells grown under ALI conditions undergo profound changes in metabolism and development that enable completion of the parasite life cycle in vitro. ALI cultures support parasite expansion \u3e 100-fold and generate viable oocysts that are transmissible in vitro and to mice, causing infection and animal death. Transgenic parasite lines created using CRISPR/Cas9 were used to complete a genetic cross in vitro, demonstrating Mendelian segregation of chromosomes during meiosis. ALI culture provides an accessible model that will enable innovative studies into Cryptosporidium biology and host interactions

    T. gondii RP Promoters & Knockdown Reveal Molecular Pathways Associated with Proliferation and Cell-Cycle Arrest

    Get PDF
    Molecular pathways regulating rapid proliferation and persistence are fundamental for pathogens but are not elucidated fully in Toxoplasma gondii. Promoters of T. gondii ribosomal proteins (RPs) were analyzed by EMSAs and ChIP. One RP promoter domain, known to bind an Apetela 2, bound to nuclear extract proteins. Promoter domains appeared to associate with histone acetyl transferases. To study effects of a RP gene's regulation in T. gondii, mutant parasites (Δrps13) were engineered with integration of tetracycline repressor (TetR) response elements in a critical location in the rps13 promoter and transfection of a yellow fluorescent-tetracycline repressor (YFP-TetR). This permitted conditional knockdown of rps13 expression in a tightly regulated manner. Δrps13 parasites were studied in the presence (+ATc) or absence of anhydrotetracycline (-ATc) in culture. -ATc, transcription of the rps13 gene and expression of RPS13 protein were markedly diminished, with concomitant cessation of parasite replication. Study of Δrps13 expressing Myc-tagged RPL22, -ATc, showed RPL22 diminished but at a slower rate. Quantitation of RNA showed diminution of 18S RNA. Depletion of RPS13 caused arrest of parasites in the G1 cell cycle phase, thereby stopping parasite proliferation. Transcriptional differences ±ATc implicate molecules likely to function in regulation of these processes. In vitro, -ATc, Δrps13 persists for months and the proliferation phenotype can be rescued with ATc. In vivo, however, Δrps13 could only be rescued when ATc was given simultaneously and not at any time after 1 week, even when L-NAME and ATc were administered. Immunization with Δrps13 parasites protects mice completely against subsequent challenge with wildtype clonal Type 1 parasites, and robustly protects mice against wildtype clonal Type 2 parasites. Our results demonstrate that G1 arrest by ribosomal protein depletion is associated with persistence of T. gondii in a model system in vitro and immunization with Δrps13 protects mice against subsequent challenge with wildtype parasites

    The Role of B-cells and IgM Antibodies in Parasitemia, Anemia, and VSG Switching in Trypanosoma brucei–Infected Mice

    Get PDF
    African trypanosomes are extracellular parasitic protozoa, predominantly transmitted by the bite of the haematophagic tsetse fly. The main mechanism considered to mediate parasitemia control in a mammalian host is the continuous interaction between antibodies and the parasite surface, covered by variant-specific surface glycoproteins. Early experimental studies have shown that B-cell responses can be strongly protective but are limited by their VSG-specificity. We have used B-cell (µMT) and IgM-deficient (IgM−/−) mice to investigate the role of B-cells and IgM antibodies in parasitemia control and the in vivo induction of trypanosomiasis-associated anemia. These infection studies revealed that that the initial setting of peak levels of parasitemia in Trypanosoma brucei–infected µMT and IgM−/− mice occurred independent of the presence of B-cells. However, B-cells helped to periodically reduce circulating parasites levels and were required for long term survival, while IgM antibodies played only a limited role in this process. Infection-associated anemia, hypothesized to be mediated by B-cell responses, was induced during infection in µMT mice as well as in IgM−/− mice, and as such occurred independently from the infection-induced host antibody response. Antigenic variation, the main immune evasion mechanism of African trypanosomes, occurred independently from host antibody responses against the parasite's ever-changing antigenic glycoprotein coat. Collectively, these results demonstrated that in murine experimental T. brucei trypanosomiasis, B-cells were crucial for periodic peak parasitemia clearance, whereas parasite-induced IgM antibodies played only a limited role in the outcome of the infection

    Inflammasome sensor NLRP1 controls rat macrophage susceptibility to Toxoplasma gondii

    Get PDF
    Toxoplasma gondii is an intracellular parasite that infects a wide range of warm-blooded species. Rats vary in their susceptibility to this parasite. The Toxo1 locus conferring Toxoplasma resistance in rats was previously mapped to a region of chromosome 10 containing Nlrp1. This gene encodes an inflammasome sensor controlling macrophage sensitivity to anthrax lethal toxin (LT) induced rapid cell death (pyroptosis). We show here that rat strain differences in Toxoplasma infected macrophage sensitivity to pyroptosis, IL-1β/IL-18 processing, and inhibition of parasite proliferation are perfectly correlated with NLRP1 sequence, while inversely correlated with sensitivity to anthrax LT-induced cell death. Using recombinant inbred rats, SNP analyses and whole transcriptome gene expression studies, we narrowed the candidate genes for control of Toxoplasma-mediated rat macrophage pyroptosis to four genes, one of which was Nlrp1. Knockdown of Nlrp1 in pyroptosis-sensitive macrophages resulted in higher parasite replication and protection from cell death. Reciprocally, overexpression of the NLRP1 variant from Toxoplasma-sensitive macrophages in pyroptosis-resistant cells led to sensitization of these resistant macrophages. Our findings reveal Toxoplasma as a novel activator of the NLRP1 inflammasome in rat macrophages

    Transcriptional Analysis of Murine Macrophages Infected with Different Toxoplasma Strains Identifies Novel Regulation of Host Signaling Pathways

    Get PDF
    Most isolates of Toxoplasma from Europe and North America fall into one of three genetically distinct clonal lineages, the type I, II and III lineages. However, in South America these strains are rarely isolated and instead a great variety of other strains are found. T. gondii strains differ widely in a number of phenotypes in mice, such as virulence, persistence, oral infectivity, migratory capacity, induction of cytokine expression and modulation of host gene expression. The outcome of toxoplasmosis in patients is also variable and we hypothesize that, besides host and environmental factors, the genotype of the parasite strain plays a major role. The molecular basis for these differences in pathogenesis, especially in strains other than the clonal lineages, remains largely unexplored. Macrophages play an essential role in the early immune response against T. gondii and are also the cell type preferentially infected in vivo. To determine if non-canonical Toxoplasma strains have unique interactions with the host cell, we infected murine macrophages with 29 different Toxoplasma strains, representing global diversity, and used RNA-sequencing to determine host and parasite transcriptomes. We identified large differences between strains in the expression level of known parasite effectors and large chromosomal structural variation in some strains. We also identified novel strain-specifically regulated host pathways, including the regulation of the type I interferon response by some atypical strains. IFNβ production by infected cells was associated with parasite killing, independent of interferon gamma activation, and dependent on endosomal Toll-like receptors in macrophages and the cytoplasmic receptor retinoic acid-inducible gene 1 (RIG-I) in fibroblasts.National Institutes of Health (U.S.) (R01-AI080621)New England Regional Center of Excellence for Biodefense and Emerging Infectious Diseases (Developmental Grant AIO57159)Pew Charitable Trusts (Biomedical Scholars Program)Robert A. Swanson Career Development awardThe Knights Templar Eye Foundation, Inc.Pre-Doctoral Grant in the Biological Sciences (5-T32-GM007287-33)Cleo and Paul Schimmel Foundatio

    Transcriptional and Linkage Analyses Identify Loci that Mediate the Differential Macrophage Response to Inflammatory Stimuli and Infection

    Get PDF
    Macrophages display flexible activation states that range between pro-inflammatory (classical activation) and anti-inflammatory (alternative activation). These macrophage polarization states contribute to a variety of organismal phenotypes such as tissue remodeling and susceptibility to infectious and inflammatory diseases. Several macrophage- or immune-related genes have been shown to modulate infectious and inflammatory disease pathogenesis. However, the potential role that differences in macrophage activation phenotypes play in modulating differences in susceptibility to infectious and inflammatory disease is just emerging. We integrated transcriptional profiling and linkage analyses to determine the genetic basis for the differential murine macrophage response to inflammatory stimuli and to infection with the obligate intracellular parasite Toxoplasma gondii. We show that specific transcriptional programs, defined by distinct genomic loci, modulate macrophage activation phenotypes. In addition, we show that the difference between AJ and C57BL/6J macrophages in controlling Toxoplasma growth after stimulation with interferon gamma and tumor necrosis factor alpha mapped to chromosome 3, proximal to the Guanylate binding protein (Gbp) locus that is known to modulate the murine macrophage response to Toxoplasma. Using an shRNA-knockdown strategy, we show that the transcript levels of an RNA helicase, Ddx1, regulates strain differences in the amount of nitric oxide produced by macrophage after stimulation with interferon gamma and tumor necrosis factor. Our results provide a template for discovering candidate genes that modulate macrophage-mediated complex traits

    Observation of the Decay Λ0b→Λ+cτ−¯ν

    Get PDF
    The first observation of the semileptonic b-baryon decay Λb0→Λc+τ-ν¯τ, with a significance of 6.1σ, is reported using a data sample corresponding to 3 fb-1 of integrated luminosity, collected by the LHCb experiment at center-of-mass energies of 7 and 8 TeV at the LHC. The τ- lepton is reconstructed in the hadronic decay to three charged pions. The ratio K=B(Λb0→Λc+τ-ν¯τ)/B(Λb0→Λc+π-π+π-) is measured to be 2.46±0.27±0.40, where the first uncertainty is statistical and the second systematic. The branching fraction B(Λb0→Λc+τ-ν¯τ)=(1.50±0.16±0.25±0.23)% is obtained, where the third uncertainty is from the external branching fraction of the normalization channel Λb0→Λc+π-π+π-. The ratio of semileptonic branching fractions R(Λc+)B(Λb0→Λc+τ-ν¯τ)/B(Λb0→Λc+μ-ν¯μ) is derived to be 0.242±0.026±0.040±0.059, where the external branching fraction uncertainty from the channel Λb0→Λc+μ-ν¯μ contributes to the last term. This result is in agreement with the standard model prediction

    Enhanced production of Λb0\Lambda_{b}^{0} baryons in high-multiplicity pppp collisions at s=13\sqrt{s} = 13 TeV

    Full text link
    The production rate of Λb0\Lambda_{b}^{0} baryons relative to B0B^{0} mesons in pppp collisions at a center-of-mass energy s=13\sqrt{s} = 13 TeV is measured by the LHCb experiment. The ratio of Λb0\Lambda_{b}^{0} to B0B^{0} production cross-sections shows a significant dependence on both the transverse momentum and the measured charged-particle multiplicity. At low multiplicity, the ratio measured at LHCb is consistent with the value measured in e+ee^{+}e^{-} collisions, and increases by a factor of 2\sim2 with increasing multiplicity. At relatively low transverse momentum, the ratio of Λb0\Lambda_{b}^{0} to B0B^{0} cross-sections is higher than what is measured in e+ee^{+}e^{-} collisions, but converges with the e+ee^{+}e^{-} ratio as the momentum increases. These results imply that the evolution of heavy bb quarks into final-state hadrons is influenced by the density of the hadronic environment produced in the collision. Comparisons with a statistical hadronization model and implications for the mechanisms enforcing quark confinement are discussed.Comment: All figures and tables, along with machine-readable versions and any supplementary material and additional information, are available at https://cern.ch/lhcbproject/Publications/p/LHCb-PAPER-2023-027.html (LHCb public pages

    Studies of η\eta and η\eta' production in pppp and ppPb collisions

    Full text link
    The production of η\eta and η\eta' mesons is studied in proton-proton and proton-lead collisions collected with the LHCb detector. Proton-proton collisions are studied at center-of-mass energies of 5.025.02 and 13 TeV13~{\rm TeV}, and proton-lead collisions are studied at a center-of-mass energy per nucleon of 8.16 TeV8.16~{\rm TeV}. The studies are performed in center-of-mass rapidity regions 2.5<yc.m.<3.52.5<y_{\rm c.m.}<3.5 (forward rapidity) and 4.0<yc.m.<3.0-4.0<y_{\rm c.m.}<-3.0 (backward rapidity) defined relative to the proton beam direction. The η\eta and η\eta' production cross sections are measured differentially as a function of transverse momentum for 1.5<pT<10 GeV1.5<p_{\rm T}<10~{\rm GeV} and 3<pT<10 GeV3<p_{\rm T}<10~{\rm GeV}, respectively. The differential cross sections are used to calculate nuclear modification factors. The nuclear modification factors for η\eta and η\eta' mesons agree at both forward and backward rapidity, showing no significant evidence of mass dependence. The differential cross sections of η\eta mesons are also used to calculate η/π0\eta/\pi^0 cross section ratios, which show evidence of a deviation from the world average. These studies offer new constraints on mass-dependent nuclear effects in heavy-ion collisions, as well as η\eta and η\eta' meson fragmentation.Comment: All figures and tables, along with machine-readable versions and any supplementary material and additional information, are available at https://lhcbproject.web.cern.ch/Publications/p/LHCb-PAPER-2023-030.html (LHCb public pages

    Observation of Cabibbo-suppressed two-body hadronic decays and precision mass measurement of the Ωc0\Omega_{c}^{0} baryon

    Full text link
    The first observation of the singly Cabibbo-suppressed Ωc0ΩK+\Omega_{c}^{0}\to\Omega^{-}K^{+} and Ωc0Ξπ+\Omega_{c}^{0}\to\Xi^{-}\pi^{+} decays is reported, using proton-proton collision data at a centre-of-mass energy of 13TeV13\,{\rm TeV}, corresponding to an integrated luminosity of 5.4fb15.4\,{\rm fb}^{-1}, collected with the LHCb detector between 2016 and 2018. The branching fraction ratios are measured to be B(Ωc0ΩK+)B(Ωc0Ωπ+)=0.0608±0.0051(stat)±0.0040(syst)\frac{\mathcal{B}(\Omega_{c}^{0}\to\Omega^{-}K^{+})}{\mathcal{B}(\Omega_{c}^{0}\to\Omega^{-}\pi^{+})}=0.0608\pm0.0051({\rm stat})\pm 0.0040({\rm syst}), B(Ωc0Ξπ+)B(Ωc0Ωπ+)=0.1581±0.0087(stat)±0.0043(syst)±0.0016(ext)\frac{\mathcal{B}(\Omega_{c}^{0}\to\Xi^{-}\pi^{+})}{\mathcal{B}(\Omega_{c}^{0}\to\Omega^{-}\pi^{+})}=0.1581\pm0.0087({\rm stat})\pm0.0043({\rm syst})\pm0.0016({\rm ext}). In addition, using the Ωc0Ωπ+\Omega_{c}^{0}\to\Omega^{-}\pi^{+} decay channel, the Ωc0\Omega_{c}^{0} baryon mass is measured to be M(Ωc0)=2695.28±0.07(stat)±0.27(syst)±0.30(ext)MeV/c2M(\Omega_{c}^{0})=2695.28\pm0.07({\rm stat})\pm0.27({\rm syst})\pm0.30({\rm ext})\,{\rm MeV}/c^{2}, improving the precision of the previous world average by a factor of four.Comment: All figures and tables, along with any supplementary material and additional information, are available at https://cern.ch/lhcbproject/Publications/p/LHCb-PAPER-2023-011.html (LHCb public pages
    corecore