203 research outputs found

    Activation in a Frontoparietal Cortical Network Underlies Individual Differences in the Performance of an Embedded Figures Task

    Get PDF
    The Embedded Figures Test (EFT) requires observers to search for a simple geometric shape hidden inside a more complex figure. Surprisingly, performance in the EFT is negatively correlated with susceptibility to illusions of spatial orientation, such as the Roelofs effect. Using fMRI, we previously demonstrated that regions in parietal cortex are involved in the contextual processing associated with the Roelofs task. In the present study, we found that similar parietal regions (superior parietal cortex and precuneus) were more active during the EFT than during a simple matching task. Importantly, these parietal activations overlapped with regions found to be involved during contextual processing in the Roelofs illusion. Additional parietal and frontal areas, in the right hemisphere, showed strong correlations between brain activity and behavioral performance during the search task. We propose that the posterior parietal regions are necessary for processing contextual information across many different, but related visuospatial tasks, with additional parietal and frontal regions serving to coordinate this processing in participants proficient in the task

    Validation of learning style measures: implications for medical education practice

    Full text link
    It is unclear which learners would most benefit from the more individualised, student-structured, interactive approaches characteristic of problem-based and computer-assisted learning. The validity of learning style measures is uncertain, and there is no unifying learning style construct identified to predict such learners. Objective  This study was conducted to validate learning style constructs and to identify the learners most likely to benefit from problem-based and computer-assisted curricula. Methods  Using a cross-sectional design, 3 established learning style inventories were administered to 97 post-Year 2 medical students. Cognitive personality was measured by the Group Embedded Figures Test, information processing by the Learning Styles Inventory, and instructional preference by the Learning Preference Inventory. The 11 subscales from the 3 inventories were factor-analysed to identify common learning constructs and to verify construct validity. Concurrent validity was determined by intercorrelations of the 11 subscales. Results  A total of 94 pre-clinical medical students completed all 3 inventories. Five meaningful learning style constructs were derived from the 11 subscales: student- versus teacher-structured learning; concrete versus abstract learning; passive versus active learning; individual versus group learning, and field-dependence versus field-independence. The concurrent validity of 10 of 11 subscales was supported by correlation analysis. Medical students most likely to thrive in a problem-based or computer-assisted learning environment would be expected to score highly on abstract, active and individual learning constructs and would be more field-independent. Conclusions  Learning style measures were validated in a medical student population and learning constructs were established for identifying learners who would most likely benefit from a problem-based or computer-assisted curriculum.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/72443/1/j.1365-2929.2006.02476.x.pd

    Innovator resilience potential: A process perspective of individual resilience as influenced by innovation project termination

    Get PDF
    Innovation projects fail at an astonishing rate. Yet, the negative effects of innovation project failures on the team members of these projects have been largely neglected in research streams that deal with innovation project failures. After such setbacks, it is vital to maintain or even strengthen project members’ innovative capabilities for subsequent innovation projects. For this, the concept of resilience, i.e. project members’ potential to positively adjust (or even grow) after a setback such as an innovation project failure, is fundamental. We develop the second-order construct of innovator resilience potential, which consists of six components – self-efficacy, outcome expectancy, optimism, hope, self-esteem, and risk propensity – that are important for project members’ potential of innovative functioning in innovation projects subsequent to a failure. We illustrate our theoretical findings by means of a qualitative study of a terminated large-scale innovation project, and derive implications for research and management

    Cognitive style modulates semantic interference effects: evidence from field dependency

    Get PDF
    The so-called semantic interference effect is a delay in selecting an appropriate target word in a context where semantic neighbours are strongly activated. Semantic interference effect has been described to vary from one individual to another. These differences in the susceptibility to semantic interference may be due to either differences in the ability to engage in lexical-specific selection mechanisms or to differences in the ability to engage more general, top-down inhibition mechanisms which suppress unwanted responses based on task-demands. However, semantic interference may also be modulated by an individual’s disposition to separate relevant perceptual signals from noise, such as a field-independent (FI) or a field-dependent (FD) cognitive style. We investigated the relationship between semantic interference in picture naming and in an STM probe task and both the ability to inhibit responses top-down (measured through a Stroop task) and a FI/FD cognitive style measured through the embedded figures test (EFT). We found a significant relationship between semantic interference in picture naming and cognitive style—with semantic interference increasing as a function of the degree of field dependence—but no associations with the semantic probe and the Stroop task. Our results suggest that semantic interference can be modulated by cognitive style, but not by differences in the ability to engage top-down control mechanisms, at least as measured by the Stroop task

    Impaired Competence for Pretense in Children with Autism: Exploring Potential Cognitive Predictors.

    Get PDF
    Lack of pretense in children with autism has been explained by a number of theoretical explanations, including impaired mentalising, impaired response inhibition, and weak central coherence. This study aimed to empirically test each of these theories. Children with autism (n=60) were significantly impaired relative to controls (n=65) when interpreting pretense, thereby supporting a competence deficit hypothesis. They also showed impaired mentalising and response inhibition, but superior local processing indicating weak central coherence. Regression analyses revealed that mentalising significantly and independently predicted pretense. The results are interpreted as supporting the impaired mentalising theory and evidence against competing theories invoking impaired response inhibition or a local processing bias. The results of this study have important implications for treatment and intervention

    Changes in rod and frame test scores recorded in schoolchildren during development--a longitudinal study.

    Get PDF
    The Rod and Frame Test has been used to assess the degree to which subjects rely on the visual frame of reference to perceive vertical (visual field dependence-independence perceptual style). Early investigations found children exhibited a wide range of alignment errors, which reduced as they matured. These studies used a mechanical Rod and Frame system, and presented only mean values of grouped data. The current study also considered changes in individual performance. Changes in rod alignment accuracy in 419 school children were measured using a computer-based Rod and Frame test. Each child was tested at school Grade 2 and retested in Grades 4 and 6. The results confirmed that children displayed a wide range of alignment errors, which decreased with age but did not reach the expected adult values. Although most children showed a decrease in frame dependency over the 4 years of the study, almost 20% had increased alignment errors suggesting that they were becoming more frame-dependent. Plots of individual variation (SD) against mean error allowed the sample to be divided into 4 groups; the majority with small errors and SDs; a group with small SDs, but alignments clustering around the frame angle of 18°; a group showing large errors in the opposite direction to the frame tilt; and a small number with large SDs whose alignment appeared to be random. The errors in the last 3 groups could largely be explained by alignment of the rod to different aspects of the frame. At corresponding ages females exhibited larger alignment errors than males although this did not reach statistical significance. This study confirms that children rely more heavily on the visual frame of reference for processing spatial orientation cues. Most become less frame-dependent as they mature, but there are considerable individual differences

    Does the Integration of Haptic and Visual Cues Reduce the Effect of a Biased Visual Reference Frame on the Subjective Head Orientation?

    Get PDF
    The selection of appropriate frames of reference (FOR) is a key factor in the elaboration of spatial perception and the production of robust interaction with our environment. The extent to which we perceive the head axis orientation (subjective head orientation, SHO) with both accuracy and precision likely contributes to the efficiency of these spatial interactions. A first goal of this study was to investigate the relative contribution of both the visual and egocentric FOR (centre-of-mass) in the SHO processing. A second goal was to investigate humans' ability to process SHO in various sensory response modalities (visual, haptic and visuo-haptic), and the way they modify the reliance to either the visual or egocentric FORs. A third goal was to question whether subjects combined visual and haptic cues optimally to increase SHO certainty and to decrease the FORs disruption effect.Thirteen subjects were asked to indicate their SHO while the visual and/or egocentric FORs were deviated. Four results emerged from our study. First, visual rod settings to SHO were altered by the tilted visual frame but not by the egocentric FOR alteration, whereas no haptic settings alteration was observed whether due to the egocentric FOR alteration or the tilted visual frame. These results are modulated by individual analysis. Second, visual and egocentric FOR dependency appear to be negatively correlated. Third, the response modality enrichment appears to improve SHO. Fourth, several combination rules of the visuo-haptic cues such as the Maximum Likelihood Estimation (MLE), Winner-Take-All (WTA) or Unweighted Mean (UWM) rule seem to account for SHO improvements. However, the UWM rule seems to best account for the improvement of visuo-haptic estimates, especially in situations with high FOR incongruence. Finally, the data also indicated that FOR reliance resulted from the application of UWM rule. This was observed more particularly, in the visual dependent subject. Conclusions: Taken together, these findings emphasize the importance of identifying individual spatial FOR preferences to assess the efficiency of our interaction with the environment whilst performing spatial tasks
    corecore