8,233 research outputs found

    Non-Gaussian statistics in space plasma turbulence, fractal properties and pitfalls

    Full text link
    Magnetic field fluctuations in the vicinity of the Earth's bow shock have been investigated with the aim to characterize the intermittent behaviour of strong plasma turbulence. The observed small-scale intermittency may be the signature of a multifractal process but a deeper inspection reveals caveats in such an interpretation. Several effects, including the anisotropy of the wavefield, the violation of the Taylor hypothesis and the occasional occurrence of coherent wave packets, strongly affect the higher order statistical properties. After correcting these effects, a more Gaussian and scale-invariant wavefield is recovered.Comment: 13 pages (including 13 postscript figures), to appear in Nonlinear Processes in Geophysic

    Corrosion of alloy 800H and the effect of surface-applied CeO2 in a sulphidizing/oxidizing/carburizing environment at 700°C

    Get PDF
    The corrosion behavior of a wrought austenitic Fe-20Cr-32Ni steel, Alloy 800H, was studied in a simulated coal-gasification atmosphere at 700°C for exposure times up to 2500 hr. The influence of preoxidation and CeO2-surface application followed by preoxidation on the corrosion resistance of this material was assessed. The improvement in the corrosion resistance due to preoxidation of the blank material was small, whereas the effect of the CeO2-treatment was significant. This difference is thought to be due to better scale adherence in the case of CeO2-surface application

    Einstein-Cartan theory as a theory of defects in space-time

    Full text link
    The Einstein-Cartan theory of gravitation and the classical theory of defects in an elastic medium are presented and compared. The former is an extension of general relativity and refers to four-dimensional space-time, while we introduce the latter as a description of the equilibrium state of a three-dimensional continuum. Despite these important differences, an analogy is built on their common geometrical foundations, and it is shown that a space-time with curvature and torsion can be considered as a state of a four-dimensional continuum containing defects. This formal analogy is useful for illustrating the geometrical concept of torsion by applying it to concrete physical problems. Moreover, the presentation of these theories using a common geometrical basis allows a deeper understanding of their foundations.Comment: 18 pages, 7 EPS figures, RevTeX4, to appear in the American Journal of Physics, revised version with typos correcte

    Magnetic flux density and the critical field in the intermediate state of type-I superconductors

    Full text link
    To address unsolved fundamental problems of the intermediate state (IS), the equilibrium magnetic flux structure and the critical field in a high purity type-I superconductor (indium film) are investigated using magneto-optical imaging with a 3D vector magnet and electrical transport measurements. The least expected observation is that the critical field in the IS can be as small as nearly 40% of the thermodynamic critical field HcH_c. This indicates that the flux density in the \textit{bulk} of normal domains can be \textit{considerably} less than HcH_c, in apparent contradiction with the long established paradigm, stating that the normal phase is unstable below HcH_c. Here we present a novel theoretical model consistently describing this and \textit{all} other properties of the IS. Moreover, our model, based the rigorous thermodynamic treatment of observed laminar flux structure in a tilted field, allows for a \textit{quantitative} determination of the domain-wall parameter and the coherence length, and provides new insight into the properties of all superconductors.Comment: 5 pages, 5 figure

    N=1/2 supergravity with matter in four Euclidean dimensions

    Full text link
    An N=1/2 supergravity in four Euclidean spacetime dimensions, coupled to both vector- and scalar-multiplet matter, is constructed for the first time. We begin with the standard (1,1) conformally extended supergravity in four Euclidean dimensions, and freeze out the graviphoton field strength to an arbitrary (fixed) self-dual field (the so-called C-deformation). Though a consistency of such procedure with local supersymmetry is not guaranteed, we find a simple consistent set of algebraic constraints that reduce the local supersymmetry by 3/4 and eliminate the corresponding gravitini. The final field theory (after the superconformal gauge-fixing) has the residual local N=(0,1/2) or just N=1/2 supersymmetry with only one chiral gravitino as the corresponding gauge field. Our theory is not `Lorentz'-invariant because of the non-vanishing self-dual graviphoton vacuum expectation value, which is common to the C-deformed N=1/2 rigidly supersymmetric field theories constructed in a non-anticommutative superspace.Comment: 21 pages, LaTeX, no figures; a reference adde

    Off-shell N=2 tensor supermultiplets

    Get PDF
    A multiplet calculus is presented for an arbitrary number n of N=2 tensor supermultiplets. For rigid supersymmetry the known couplings are reproduced. In the superconformal case the target spaces parametrized by the scalar fields are cones over (3n-1)-dimensional spaces encoded in homogeneous SU(2) invariant potentials, subject to certain constraints. The coupling to conformal supergravity enables the derivation of a large class of supergravity Lagrangians with vector and tensor multiplets and hypermultiplets. Dualizing the tensor fields into scalars leads to hypermultiplets with hyperkahler or quaternion-Kahler target spaces with at least n abelian isometries. It is demonstrated how to use the calculus for the construction of Lagrangians containing higher-derivative couplings of tensor multiplets. For the application of the c-map between vector and tensor supermultiplets to Lagrangians with higher-order derivatives, an off-shell version of this map is proposed. Various other implications of the results are discussed. As an example an elegant derivation of the classification of 4-dimensional quaternion-Kahler manifolds with two commuting isometries is given.Comment: 36 page

    Special complex manifolds

    Full text link
    We introduce the notion of a special complex manifold: a complex manifold (M,J) with a flat torsionfree connection \nabla such that (\nabla J) is symmetric. A special symplectic manifold is then defined as a special complex manifold together with a \nabla-parallel symplectic form \omega . This generalises Freed's definition of (affine) special K\"ahler manifolds. We also define projective versions of all these geometries. Our main result is an extrinsic realisation of all simply connected (affine or projective) special complex, symplectic and K\"ahler manifolds. We prove that the above three types of special geometry are completely solvable, in the sense that they are locally defined by free holomorphic data. In fact, any special complex manifold is locally realised as the image of a holomorphic 1-form \alpha : C^n \to T^* C^n. Such a realisation induces a canonical \nabla-parallel symplectic structure on M and any special symplectic manifold is locally obtained this way. Special K\"ahler manifolds are realised as complex Lagrangian submanifolds and correspond to closed forms \alpha. Finally, we discuss the natural geometric structures on the cotangent bundle of a special symplectic manifold, which generalise the hyper-K\"ahler structure on the cotangent bundle of a special K\"ahler manifold.Comment: 24 pages, latex, section 3 revised (v2), modified Abstract and Introduction, version to appear in J. Geom. Phy

    Completeness in supergravity constructions

    Full text link
    We prove that the supergravity r- and c-maps preserve completeness. As a consequence, any component H of a hypersurface {h=1} defined by a homogeneous cubic polynomial such that -d^2 h is a complete Riemannian metric on H defines a complete projective special Kahler manifold and any complete projective special Kahler manifold defines a complete quaternionic Kahler manifold of negative scalar curvature. We classify all complete quaternionic Kahler manifolds of dimension less or equal to 12 which are obtained in this way and describe some complete examples in 16 dimensions.Comment: 29 page

    Pharmacological LRRK2 kinase inhibition induces LRRK2 protein destabilization and proteasomal degradation

    Get PDF
    Leucine-rich repeat kinase 2 (LRRK2) kinase activity is increased in several pathogenic mutations, including the most common mutation, G2019S, and is known to play a role in Parkinson’s disease (PD) pathobiology. This has stimulated the development of potent, selective LRRK2 kinase inhibitors as one of the most prevailing disease-modifying therapeutic PD strategies. Although several lines of evidence support beneficial effects of LRRK2 kinase inhibitors, many questions need to be answered before clinical applications can be envisaged. Using six different LRRK2 kinase inhibitors, we show that LRRK2 kinase inhibition induces LRRK2 dephosphorylation and can reduce LRRK2 protein levels of overexpressed wild type and G2019S, but not A2016T or K1906M, LRRK2 as well as endogenous LRRK2 in mouse brain, lung and kidney. The inhibitor-induced reduction in LRRK2 levels could be reversed by proteasomal inhibition, but not by lysosomal inhibition, while mRNA levels remained unaffected. In addition, using LRRK2 S910A and S935A phosphorylation mutants, we show that dephosphorylation of these sites is not required for LRRK2 degradation. Increasing our insight in the molecular and cellular consequences of LRRK2 kinase inhibition will be crucial in the further development of LRRK2-based PD therapies
    • …
    corecore