The Einstein-Cartan theory of gravitation and the classical theory of defects
in an elastic medium are presented and compared. The former is an extension of
general relativity and refers to four-dimensional space-time, while we
introduce the latter as a description of the equilibrium state of a
three-dimensional continuum. Despite these important differences, an analogy is
built on their common geometrical foundations, and it is shown that a
space-time with curvature and torsion can be considered as a state of a
four-dimensional continuum containing defects. This formal analogy is useful
for illustrating the geometrical concept of torsion by applying it to concrete
physical problems. Moreover, the presentation of these theories using a common
geometrical basis allows a deeper understanding of their foundations.Comment: 18 pages, 7 EPS figures, RevTeX4, to appear in the American Journal
of Physics, revised version with typos correcte