research

Special complex manifolds

Abstract

We introduce the notion of a special complex manifold: a complex manifold (M,J) with a flat torsionfree connection \nabla such that (\nabla J) is symmetric. A special symplectic manifold is then defined as a special complex manifold together with a \nabla-parallel symplectic form \omega . This generalises Freed's definition of (affine) special K\"ahler manifolds. We also define projective versions of all these geometries. Our main result is an extrinsic realisation of all simply connected (affine or projective) special complex, symplectic and K\"ahler manifolds. We prove that the above three types of special geometry are completely solvable, in the sense that they are locally defined by free holomorphic data. In fact, any special complex manifold is locally realised as the image of a holomorphic 1-form \alpha : C^n \to T^* C^n. Such a realisation induces a canonical \nabla-parallel symplectic structure on M and any special symplectic manifold is locally obtained this way. Special K\"ahler manifolds are realised as complex Lagrangian submanifolds and correspond to closed forms \alpha. Finally, we discuss the natural geometric structures on the cotangent bundle of a special symplectic manifold, which generalise the hyper-K\"ahler structure on the cotangent bundle of a special K\"ahler manifold.Comment: 24 pages, latex, section 3 revised (v2), modified Abstract and Introduction, version to appear in J. Geom. Phy

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 03/01/2020