104 research outputs found

    Sonification and science pedagogy: preliminary experiences and assessments of earth science data presented in an undergraduate general education course

    Get PDF
    This paper describes preliminary investigations into how sonifications of scientific graphs are perceived by undergraduate students in an introductory course in oceanography at the University of Rhode Island. The goal is to gather data that can assist in gauging students’ levels of engagement with sonification as a component of science education. The results, while preliminary, show promise that sonified graphs improve understanding, especially when they are presented in combination with visual graphs

    The metabolic response of pteropods to acidification reflects natural CO2-exposure in oxygen minimum zones

    Get PDF
    © The Author(s), 2012. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Biogeosciences 9 (2012): 747-757, doi:10.5194/bg-9-747-2012.Shelled pteropods (Thecosomata) are a group of holoplanktonic mollusks that are believed to be especially sensitive to ocean acidification because their aragonitic shells are highly soluble. Despite this concern, there is very little known about the physiological response of these animals to conditions of elevated carbon dioxide. This study examines the oxygen consumption and ammonia excretion of five pteropod species, collected from tropical regions of the Pacific Ocean, to elevated levels of carbon dioxide (0.10%, 1000 ppm). Our results show that pteropods that naturally migrate into oxygen minimum zones, such as Hyalocylis striata, Clio pyramidata, Cavolinia longirostris and Creseis virgula, were not affected by carbon dioxide at the levels and duration tested. Diacria quadridentata, which does not migrate, responds to high carbon dioxide conditions with reduced oxygen consumption and ammonia excretion. This indicates that the natural chemical environment of individual species may influence their resilience to ocean acidification.Funding of the National Science Foundation (grant OCE-0526502 to Wishner and Seibel, OCE – 0526545 to Daly, and OCE – 0851043 to Seibel), the University of Rhode Island, and the Rhode Island Experimental Program to Stimulate Competitive Research Fellowship Program

    Control of deep-sea benthic community structure by oxygen and organic-matter gradients in the eastern Pacific Ocean

    Get PDF
    At boundaries of oxygen minimum zones (OMZs), bathyal faunas experience steep gradients in oxygen and organic-matter availability. The present study compares changes in microbial, meiofaunal, macrofaunal and megafaunal benthic assemblages along these gradients on Volcano 7, a 2.3-km high seamount in the eastern tropical Pacific. Faunal tolerance to dysaerobic (low oxygen) conditions varies with organism size; microbial and meiofaunal abundances are less affected than macro- and megafaunal abundances. At the exceedingly low concentrations (\u3c0.1 ml/l) encountered on the upper summit of Volcano 7, oxygen appears to exert primary control over abundance, composition and diversity of macrofauna, overriding other factors such as food availability and sediment grain size. When oxygen concentration is sufficient, food availability in sediments (indicated by the presence of labile material such as chlorophyll a) is highly correlated with meiofaunal and macrofaunal abundance. Four distinct physical zones were identified on Volcano 7: (1) the coarse-grained upper summit zone (730–770 m) where near-bottom oxygen concentrations were usually lowest (often \u3c0.1 ml/l) and organic-matter (% organic carbon and chlorophyll a) availability was high, (2) the coarse-grained lower summit (770–1000 m) where near-bottom oxygen concentrations were usually slightly higher (0.11 to 0.16 ml/l) and organic-matter availability remained high, (3) the coarse-grained flank (1000–2000 m) where oxygen concentration was intermediate (0.7–0.9 ml/l) and sediment organic-matter content was very low, and (4) the finer-grained base (2000–3500 m) where oxygen values exceeded 2.5 ml/l, sediment organic carbon was moderate, and chlorophyll a was low. Abundances of larger forms (megafauna and macrofauna) were severely reduced on the upper summit, but attained high values (2.25/m2 and 8,457/m2 respectively) just tens of meters below. The smaller forms (bacteria and meiofauna) attained peak abundances on the low-oxygen upper summit, however, abundances of harpacticoid copepods were greatly reduced on the upper and lower summit, presumably due to oxygen limitation. Macrofaunal abundance and diversity patterns along the Volcano 7 oxygen/enrichment gradient resembled those typically observed along shallow-water gradients of organic pollution. Low densities of a few soft-bodied, low-oxygen tolerant species resided on the upper summit, a high-density, low-diversity assemblage inhabited the lower summit, and low-density, high-diversity assemblages occupied the flank and base sediments. The infaunal communities on Volcano 7 support the idea that OMZ boundaries are regions of enhanced biological activity. Modern faunal distributions and biogenic structures at OMZ boundaries may be useful in reconstructing oxygenation histories of ancient marine basins

    Vertical Distribution of Planktic Foraminifera through an Oxygen Minimum Zone: How Assemblages and Shell Morphology Reflect Oxygen Concentrations

    Get PDF
    Oxygen-depleted regions of the global ocean are rapidly expanding, with important implications for global biogeochemical cycles. However, our ability to make projections of a future deoxygenated ocean is limited by a lack of empirical data with which to test and constrain the behavior of global climatic and oceanographic models. We use depth-stratified plankton tows to demonstrate that some species of planktic foraminifera are adapted to life in the heart of the pelagic Oxygen Minimum Zone (OMZ). In particular, we identify two species, Globorotaloides hexagonus and Hastigerina parapelagica, living within the Eastern Tropical North Pacific OMZ. The shells of the former are preserved in marine sediments and could be used to trace the extent and intensity of low-oxygen pelagic habitats in the fossil record. Additional morphometric analyses of G. hexagonus show that shells found in the lowest oxygen environments are larger, more porous, less dense, and have more chambers in the final whorl. The association of this species with the OMZ and the apparent plasticity of its shell in response to ambient oxygenation invites the use of G. hexagonus shells in sediment cores as potential proxies for both the presence and intensity of overlying OMZs

    SNAGA, TEORIJA I PRAKSA (Kraft, Theorie und Praxis)

    Get PDF
    We have developed a global biogeographic classification of the mesopelagic zone to reflect the regional scales over which the ocean interior varies in terms of biodiversity and function. An integrated approach was necessary, as global gaps in information and variable sampling methods preclude strictly statistical approaches. A panel combining expertise in oceanography, geospatial mapping, and deep-sea biology convened to collate expert opinion on the distributional patterns of pelagic fauna relative to environmental proxies (temperature, salinity, and dissolved oxygen at mesopelagic depths). An iterative Delphi Method integrating additional biological and physical data was used to classify biogeographic ecoregions and to identify the location of ecoregion boundaries or inter-regions gradients. We define 33 global mesopelagic ecoregions. Of these, 20 are oceanic while 13 are ‘distant neritic.’ While each is driven by a complex of controlling factors, the putative primary driver of each ecoregion was identified. While work remains to be done to produce a comprehensive and robust mesopelagic biogeography (i.e., reflecting temporal variation), we believe that the classification set forth in this study will prove to be a useful and timely input to policy planning and management for conservation of deep-pelagic marine resources. In particular, it gives an indication of the spatial scale at which faunal communities are expected to be broadly similar in composition, and hence can inform application of ecosystem-based management approaches, marine spatial planning and the distribution and spacing of networks of representative protected areas

    Date, time, location, and depth range for MOCNESS tows from R/V Oceanus in the Eastern Tropical Pacific, Tropical Eastern Pacific from 2016-04-17 to 2016-05-02

    No full text
    Dataset: MOCNESS Event Logs Metabolic IndexDate, time, location, and depth range for MOCNESS tows For a complete list of measurements, refer to the full dataset description in the supplemental file 'Dataset_description.pdf'. The most current version of this dataset is available at: https://www.bco-dmo.org/dataset/787329NSF Division of Ocean Sciences (NSF OCE) OCE-145924
    corecore