506 research outputs found

    Differentiated Instruction

    Get PDF
    The advantages of differentiated insh·uction compared to traditional direct instruction were contrasted aud compared in this study. The research examined the need for differentiation in public school classrooms with a wide range of student skill aud ability. The focus of the research was to determine whether or not differentiation is a sound and best teaching practice, and to what extent it should be incorporated into national curriculum instruction. The project centered on the creation of a differentiated unit for au eleventh grade U.S. Hist01y class. The unit is designed to accommodate a mixed-ability classroom by using differentiated instruction strategies. The results found that differentiated instruction is indeed a best practice and should be used as often as possible in all grades. However, the implications of practicing differentiation contribute to why differentiation remains controversial and underused

    Kondo Behavior of U in CaB6_6

    Full text link
    Replacing U for Ca in semiconducting CaB6_6 at the few at.% level induces metallic behaviour and Kondo-type phenomena at low temperatures, a rather unusual feature for U impurities in metallic hosts. For Ca0.992_{0.992}U0.008_{0.008}B6_6, the resistance minimum occurs at TT = 17 K. The subsequent characteristic logarithmic increase of the resistivity with decreasing temperature merges into the expected T2T^2 dependence below 0.8 K. Data of the low-temperature specific heat and the magnetization are analyzed by employing a simple resonance-level model. Analogous measurements on LaB6_6 with a small amount of U revealed no traces of Kondo behavior, above 0.4 K.Comment: 4 pages, 4 figures, submitted for publication to Europhysics Letter

    Observed and Physical Properties of Core-Collapse Supernovae

    Get PDF
    I use photometry and spectroscopy data for 24 Type II plateau supernovae to examine their observed and physical properties. This dataset shows that these objects encompass a wide range of ~5 mag in their plateau luminosities, their expansion velocities vary by x5, and the nickel masses produced in these explosions go from 0.0016 to 0.26 Mo. From a subset of 16 objects I find that the explosion energies vary between 0.6x and 5.5x10^51 ergs, the ejected masses encompass the range 14-56 Mo, and the progenitors' radii go from 80 to 600 Ro. Despite this great diversity several regularities emerge, which reveal that there is a continuum in the properties of these objects from the faint, low-energy, nickel-poor SNe 1997D and 1999br, to the bright, high-energy, nickel-rich SN 1992am. This study provides evidence that more massive progenitors produce more energetic explosions, thus suggesting that the outcome of the core collapse is somewhat determined by the envelope mass. I find also that supernovae with greater energies produce more nickel. Similar relationships appear to hold for Type Ib/c supernovae, which suggests that both Type II and Type Ib/c supernovae share the same core physics. When the whole sample of core collapse objects is considered, there is a continous distribution of energies below 8x10^51 ergs. Far above in energy scale and nickel production lies the extreme hypernova 1998bw, the only supernova firmly associated to a GRB.Comment: 25 pages, 7 figures, accepted for Part 1 of Astrophysical Journa

    Measurement of length distribution of beta-lactoglobulin fibrils by multiwavelength analytical ultracentrifugation

    Get PDF
    The whey protein beta-lactoglobulin is the building block of amyloid fibrils which exhibit a great potential in various applications. These include stabilization of gels or emulsions. During biotechnological processing, high shear forces lead to fragmentation of fibrils and therefore to smaller fibril lengths. To provide insight into such processes, pure straight amyloid fibril dispersions (prepared at pH 2) were produced and sheared using the rotor stator setup of an Ultra Turrax. In the first part of this work, the sedimentation properties of fragmented amyloid fibrils sheared at different stress levels were analyzed with mulitwavelength analytical ultracentrifugation (AUC). Sedimentation data analysis was carried out with the boundary condition that fragmented fibrils were of cylindrical shape, for which frictional properties are known. These results were compared with complementary atomic force microscopy (AFM) measurements. We demonstrate how the sedimentation coefficient distribution from AUC experiments is influenced by the underlying length and diameter distribution of amyloid fibrils. In the second part of this work, we show how to correlate the fibril size reduction kinetics with the applied rotor revolution and the resulting energy density, respectively, using modal values of the sedimentation coefficients obtained from AUC. Remarkably, the determined scaling laws for the size reduction are in agreement with the results for other material systems, such as emulsification processes or the size reduction of graphene oxide sheets.</p

    Hot Carrier Transport and Photocurrent Response in Graphene

    Full text link
    Strong electron-electron interactions in graphene are expected to result in multiple-excitation generation by the absorption of a single photon. We show that the impact of carrier multiplication on photocurrent response is enhanced by very inefficient electron cooling, resulting in an abundance of hot carriers. The hot-carrier-mediated energy transport dominates the photoresponse and manifests itself in quantum efficiencies that can exceed unity, as well as in a characteristic dependence of the photocurrent on gate voltages. The pattern of multiple photocurrent sign changes as a function of gate voltage provides a fingerprint of hot-carrier-dominated transport and carrier multiplication.Comment: 4 pgs, 2 fg

    Competing Ultrafast Energy Relaxation Pathways in Photoexcited Graphene

    Get PDF
    For most optoelectronic applications of graphene a thorough understanding of the processes that govern energy relaxation of photoexcited carriers is essential. The ultrafast energy relaxation in graphene occurs through two competing pathways: carrier-carrier scattering -- creating an elevated carrier temperature -- and optical phonon emission. At present, it is not clear what determines the dominating relaxation pathway. Here we reach a unifying picture of the ultrafast energy relaxation by investigating the terahertz photoconductivity, while varying the Fermi energy, photon energy, and fluence over a wide range. We find that sufficiently low fluence (≲\lesssim 4 μ\muJ/cm2^2) in conjunction with sufficiently high Fermi energy (≳\gtrsim 0.1 eV) gives rise to energy relaxation that is dominated by carrier-carrier scattering, which leads to efficient carrier heating. Upon increasing the fluence or decreasing the Fermi energy, the carrier heating efficiency decreases, presumably due to energy relaxation that becomes increasingly dominated by phonon emission. Carrier heating through carrier-carrier scattering accounts for the negative photoconductivity for doped graphene observed at terahertz frequencies. We present a simple model that reproduces the data for a wide range of Fermi levels and excitation energies, and allows us to qualitatively assess how the branching ratio between the two distinct relaxation pathways depends on excitation fluence and Fermi energy.Comment: Nano Letters 201
    • …
    corecore