7,390 research outputs found

    Assessment of geophysical flows for zero-gravity simulation

    Get PDF
    The results of research relating to the feasibility of using a low gravity environment to model geophysical flows are presented. Atmospheric and solid earth flows are considered. Possible experiments and their required apparatus are suggested

    A High Stellar Obliquity in the WASP-7 Exoplanetary System

    Get PDF
    We measure a tilt of 86+-6 deg between the sky projections of the rotation axis of the WASP-7 star, and the orbital axis of its close-in giant planet. This measurement is based on observations of the Rossiter-McLaughlin (RM) effect with the Planet Finder Spectrograph on the Magellan II telescope. The result conforms with the previously noted pattern among hot-Jupiter hosts, namely, that the hosts lacking thick convective envelopes have high obliquities. Because the planet's trajectory crosses a wide range of stellar latitudes, observations of the RM effect can in principle reveal the stellar differential rotation profile; however, with the present data the signal of differential rotation could not be detected. The host star is found to exhibit radial-velocity noise (``stellar jitter') with an amplitude of ~30m/s over a timescale of days.Comment: ApJ accepted, 9 pages, 9 figure

    Analytic Approximations for Transit Light Curve Observables, Uncertainties, and Covariances

    Full text link
    The light curve of an exoplanetary transit can be used to estimate the planetary radius and other parameters of interest. Because accurate parameter estimation is a non-analytic and computationally intensive problem, it is often useful to have analytic approximations for the parameters as well as their uncertainties and covariances. Here we give such formulas, for the case of an exoplanet transiting a star with a uniform brightness distribution. We also assess the advantages of some relatively uncorrelated parameter sets for fitting actual data. When limb darkening is significant, our parameter sets are still useful, although our analytic formulas underpredict the covariances and uncertainties.Comment: 33 pages, 14 figure

    HATS-1b: The First Transiting Planet Discovered by the HATSouth Survey

    Full text link
    We report the discovery of HATS-1b, a transiting extrasolar planet orbiting the moderately bright V=12.05 G dwarf star GSC 6652-00186, and the first planet discovered by HATSouth, a global network of autonomous wide-field telescopes. HATS-1b has a period P~3.4465 d, mass Mp~1.86MJ, and radius Rp~1.30RJ. The host star has a mass of 0.99Msun, and radius of 1.04Rsun. The discovery light curve of HATS-1b has near continuous coverage over several multi-day periods, demonstrating the power of using a global network of telescopes to discover transiting planets.Comment: Submitted to AJ 10 pages, 5 figures, 6 table

    Obliquities of Hot Jupiter host stars: Evidence for tidal interactions and primordial misalignments

    Get PDF
    We provide evidence that the obliquities of stars with close-in giant planets were initially nearly random, and that the low obliquities that are often observed are a consequence of star-planet tidal interactions. The evidence is based on 14 new measurements of the Rossiter-McLaughlin effect (for the systems HAT-P-6, HAT-P-7, HAT-P-16, HAT-P-24, HAT-P-32, HAT-P-34, WASP-12, WASP-16, WASP-18, WASP-19, WASP-26, WASP-31, Gl 436, and Kepler-8), as well as a critical review of previous observations. The low-obliquity (well-aligned) systems are those for which the expected tidal timescale is short, and likewise the high-obliquity (misaligned and retrograde) systems are those for which the expected timescale is long. At face value, this finding indicates that the origin of hot Jupiters involves dynamical interactions like planet-planet interactions or the Kozai effect that tilt their orbits, rather than inspiraling due to interaction with a protoplanetary disk. We discuss the status of this hypothesis and the observations that are needed for a more definitive conclusion.Comment: Accepted for publication in ApJ; typos corrected, 2 broken references fixed, 26 pages, 25 figure

    The cosmic ray spectrum above 10(17) eV

    Get PDF
    The final analysis of the data obtained by the Sydney University Giant Airshower Recorder (SUGAR) is presented. The data has been reanalysed to take into account the effects of afterpulsing in the photomultiplier tubes. Event data was used to produce a spectrum of equivalent vertical muon number and from this a model dependent primary energy spectrum was obtained. These spectra show good evidence for the Ankle: a flattening at 10(19) eV. There is no sign of the cut-off which would be expected from the effects of the universal black body radiation

    Neutron scattering study of spin ordering and stripe pinning in superconducting La1.93_{1.93}Sr0.07_{0.07}CuO4_4

    Full text link
    The relationships among charge order, spin fluctuations, and superconductivity in underdoped cuprates remain controversial. We use neutron scattering techniques to study these phenomena in La1.93_{1.93}Sr0.07_{0.07}CuO4_4, a superconductor with a transition temperature of Tc=20T_c = 20~K. At TTcT\ll T_c, we find incommensurate spin fluctuations with a quasielastic energy spectrum and no sign of a gap within the energy range from 0.2 to 15 meV. A weak elastic magnetic component grows below 10\sim10~K, consistent with results from local probes. Regarding the atomic lattice, we have discovered unexpectedly strong fluctuations of the CuO6_6 octahedra about Cu-O bonds, which are associated with inequivalent O sites within the CuO2_2 planes. Furthermore, we observed a weak elastic (33ˉ0)(3\bar{3}0) superlattice peak that implies a reduced lattice symmetry. The presence of inequivalent O sites rationalizes various pieces of evidence for charge stripe order in underdoped \lsco. The coexistence of superconductivity with quasi-static spin-stripe order suggests the presence of intertwined orders; however, the rotation of the stripe orientation away from the Cu-O bonds might be connected with evidence for a finite gap at the nodal points of the superconducting gap function.Comment: 13 pages, 11 figures; accepted versio

    Mass and dust in the disk of a spiral lens galaxy

    Full text link
    Gravitational lensing is a potentially important probe of spiral galaxy structure, but only a few cases of lensing by spiral galaxies are known. We present Hubble Space Telescope and Magellan observations of the two-image quasar PMN J2004-1349, revealing that the lens galaxy is a spiral galaxy. One of the quasar images passes through a spiral arm of the galaxy and suffers 3 magnitudes of V-band extinction. Using simple lens models, we show that the mass quadrupole is well-aligned with the observed galaxy disk. A more detailed model with components representing the bulge and disk gives a bulge-to-disk mass ratio of 0.16 +/- 0.05. The addition of a spherical dark halo, tailored to produce an overall flat rotation curve, does not change this conclusion.Comment: ApJ, in press [9pp, 7 figs

    The Transit Ingress and the Tilted Orbit of the Extraordinarily Eccentric Exoplanet HD 80606b

    Get PDF
    We present the results of a transcontinental campaign to observe the 2009 June 5 transit of the exoplanet HD 80606b. We report the first detection of the transit ingress, revealing the transit duration to be 11.64 +/- 0.25 hr and allowing more robust determinations of the system parameters. Keck spectra obtained at midtransit exhibit an anomalous blueshift, giving definitive evidence that the stellar spin axis and planetary orbital axis are misaligned. The Keck data show that the projected spin-orbit angle is between 32-87 deg with 68.3% confidence and between 14-142 deg with 99.73% confidence. Thus the orbit of this planet is not only highly eccentric (e=0.93), but is also tilted away from the equatorial plane of its parent star. A large tilt had been predicted, based on the idea that the planet's eccentric orbit was caused by the Kozai mechanism. Independently of the theory, it is noteworthy that all 3 exoplanetary systems with known spin-orbit misalignments have massive planets on eccentric orbits, suggesting that those systems migrate differently than lower-mass planets on circular orbits.Comment: ApJ, in press [13 pg
    corecore