18 research outputs found
High PAR and UV-B radiation-induced differential responses in green and white leaf sectors of Pelargonium zonale in relation to sugar, antioxidative and phenolic metabolism
In this study we investigated the specific effects of high photosynthetically active radiation (PAR) and ecologically
relevant UV-B radiation (0.90 W m-2) on antioxidative, phenolic and sugar metabolism in variegated
Pelargonium zonale plants. The green-white leaf variegation in these plants presents a suitable model system
for examining “source-sink” interactions within the same leaf. High PAR (1350 μmol m-2 s-1) and UV-B radiation
induced tissue specific responses in variegated P. zonale leaves. While UV-B radiation had a pronounced effect
on phenolic content in the white tissue, high PAR intensity stimulated accumulation of phenylpropanoids
and flavonoids with preferential antioxidative vs. UV-screening function in green tissue. High PAR stimulated
the increase of antioxidative metabolism in both leaf sections. However, the greater enhancement of ascorbate
peroxidase and catalase activities and ascorbate content under HL+UV-B than HL only in green sectors,
indicated that UV-B radiation and high PAR synergistically stimulated antioxidative defense. These results indicate
that green tissue can be considered as high light acclimated, provided with an efficient defense against
potential oxidative pressure under high PAR, along with significant protective role of UV-B radiation. Efficient
sugar transport from green to white tissue was stimulated by both UV-B radiation and high PAR intensity. By
stimulation of starch and sucrose breakdown and carbon allocation in the form of soluble sugars from “source”
(green) tissue to “sink” (white) tissue, UV-B radiation stimulates a compensatory mechanism for phenylpropanoid
and flavonoid biosynthesis in white tissue, due to the lack of photosynthesis
B‐GATA factors are required to repress high‐light stress responses in Marchantia polymorpha and Arabidopsis thaliana
GATAs are evolutionarily conserved zinc-finger transcription factors from eukaryotes. In plants, GATAs can be subdivided into four classes, A–D, based on their DNA-binding domain, and into further subclasses based on additional protein motifs. B-GATAs with a so-called leucine-leucine-methionine (LLM)-domain can already be found in algae. In angiosperms, the B-GATA family is expanded and can be subdivided in to LLM- or HAN-domain B-GATAs. Both, the LLM- and the HAN-domain are conserved domains of unknown biochemical function. Interestingly, the B-GATA family in the liverwort Marchantia polymorpha and the moss Physcomitrium patens is restricted to one and four family members, respectively. And, in contrast to vascular plants, the bryophyte B-GATAs contain a HAN- as well as an LLM-domain. Here, we characterise mutants of the single B-GATA from Marchantia polymorpha. We reveal that this mutant has defects in thallus growth and in gemma formation. Transcriptomic studies uncover that the B-GATA mutant displays a constitutive high-light (HL) stress response, a phenotype that we then also confirm in mutants of Arabidopsis thaliana LLM-domain B-GATAs, suggesting that the B-GATAs have a protective role towards HL stress.Deutsche Forschungsgemeinschaft
http://dx.doi.org/10.13039/501100001659Peer Reviewe
How do cryptochromes and UVR8 interact in natural and simulated sunlight?
Cryptochromes (CRYs) and UV RESISTANCE LOCUS 8 (UVR8) photoreceptors perceive UV-A/blue (315-500 nm) and UV-B (280-315 nm) radiation in plants, respectively. While the roles of CRYs and UVR8 have been studied in separate controlled-environment experiments, little is known about the interaction between these photoreceptors. Here, Arabidopsis wild-type Ler, CRYs and UVR8 photoreceptor mutants (uvr8-2, cry1cry2 and cry1cry2uvr8-2), and a flavonoid biosynthesis-defective mutant (tt4) were grown in a sun simulator. Plants were exposed to filtered radiation for 17 d or for 6 h, to study the effects of blue, UV-A, and UV-B radiation. Both CRYs and UVR8 independently enabled growth and survival of plants under solar levels of UV, while their joint absence was lethal under UV-B. CRYs mediated gene expression under blue light. UVR8 mediated gene expression under UV-B radiation, and in the absence of CRYs, also under UV-A. This negative regulation of UVR8-mediated gene expression by CRYs was also observed for UV-B. The accumulation of flavonoids was also consistent with this interaction between CRYs and UVR8. In conclusion, we provide evidence for an antagonistic interaction between CRYs and UVR8 and a role of UVR8 in UV-A perception.Peer reviewe
Integrative multi‐omics analyses of date palm (Phoenix dactylifera) roots and leaves reveal how the halophyte land plant copes with sea water
Date palm (Phoenix dactylifera L.) is able to grow and complete its life cycle while being rooted in highly saline soils. Which of the many well-known salt-tolerance strategies are combined to fine-tune this remarkable resilience is unknown. The precise location, whether in the shoot or the root, where these strategies are employed remains uncertain, leaving us unaware of how the various known salt-tolerance mechanisms are integrated to fine-tune this remarkable resilience. To address this shortcoming, we exposed date palm to a salt stress dose equivalent to seawater for up to 4 weeks and applied integrative multi-omics analyses followed by targeted metabolomics, hormone, and ion analyses. Integration of proteomic into transcriptomic data allowed a view beyond simple correlation, revealing a remarkably high degree of convergence between gene expression and protein abundance. This sheds a clear light on the acclimatization mechanisms employed, which depend on reprogramming of protein biosynthesis. For growth in highly saline habitats, date palm effectively combines various salt-tolerance mechanisms found in both halophytes and glycophytes: “avoidance” by efficient sodium and chloride exclusion at the roots, and “acclimation” by osmotic adjustment, reactive oxygen species scavenging in leaves, and remodeling of the ribosome-associated proteome in salt-exposed root cells. Combined efficiently as in P. dactylifera L., these sets of mechanisms seem to explain the palm's excellent salt stress tolerance
Combined efects of drought and simulated pathogen attack on root exudation rates of tomatoes
Background and aims
Food production is threatened by direct climate change effects including drought. Indirect effects, including changes in plant-pathogen dynamics and increased susceptibility to pathogens, further exacerbate the risks. Root exudation, which plays a crucial role in plant defence against drought and pathogens, is influenced by both water stress and pathogens. However, the interactive effects of these abiotic and biotic factors are rarely studied.
Methods
We conducted a controlled environment experiment to investigate the effects of moderate drought and simulated pathogen attack (using pipecolic acid, an inducer of systemic acquired resistance) on the rates of root exudation of total organic carbon (TOC) and total nitrogen (TN) of four tomato cultivars grown in potting soil.
Results
Drought increased the exudation of TOC and TN per unit of root area, while pipecolic acid did not have any significant effect. Furthermore, there was no interaction observed between the abiotic and biotic factors. However, due to the reduction in plant and root biomass caused by drought, the total exudation per plant remained similar between control and water-limited plants. Additionally, pipecolic acid reduced the carbon-to-nitrogen ratio of exudates and increased the total exudation of TN.
Conclusion
The increased exudation observed in drought-stressed plants may serve as a strategy to maintain root and rhizosphere activity despite reduced root growth. Notably, the impact of drought differed among the tested cultivars, highlighting their diverse levels of drought tolerance. This emphasises the importance of preserving a wide range of crop cultivars to ensure food security under increasing drought.Open Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature. We acknowledge the support of the EPPN2020 (European Plant Phenotyping Network) for the PhenoTOMVOC project that enabled us to use the facilities at the Research Unit Environmental Simulation (Helmholtz Munich). This research was also financially supported by the grant TED2021-132627B-I00 funded by the Spanish MCIN/AEI/https://doi.org/10.13039/501100011033 and European Union NextGenerationEU/PRTR, the Fundación Ramón Areces grant CIVP20A6621, and the Catalan Government grant SGR 2021 − 1333.info:eu-repo/semantics/publishedVersio
Combined effects of drought and simulated pathogen attack on root exudation rates of tomatoes
Altres ajuts: the Fundación Ramón Areces grant CIVP20A6621Background and aims: Food production is threatened by direct climate change effects including drought. Indirect effects, including changes in plant-pathogen dynamics and increased susceptibility to pathogens, further exacerbate the risks. Root exudation, which plays a crucial role in plant defence against drought and pathogens, is influenced by both water stress and pathogens. However, the interactive effects of these abiotic and biotic factors are rarely studied. Methods We conducted a controlled environment experiment to investigate the effects of moderate drought and simulated pathogen attack (using pipecolic acid, an inducer of systemic acquired resistance) on the rates of root exudation of total organic carbon (TOC) and total nitrogen (TN) of four tomato cultivars grown in potting soil. Results:Drought increased the exudation of TOC and TN per unit of root area, while pipecolic acid did not have any significant effect. Furthermore, there was no interaction observed between the abiotic and biotic factors. However, due to the reduction in plant and root biomass caused by drought, the total exudation per plant remained similar between control and water-limited plants. Additionally, pipecolic acid reduced the carbon-to-nitrogen ratio of exudates and increased the total exudation of TN. Conclusion: The increased exudation observed in drought-stressed plants may serve as a strategy to maintain root and rhizosphere activity despite reduced root growth. Notably, the impact of drought differed among the tested cultivars, highlighting their diverse levels of drought tolerance. This emphasises the importance of preserving a wide range of crop cultivars to ensure food security under increasing drought
Phenotypic responses to drought stress in wheat on genotype, plant and single seed level
Plant phenotyping reveals relationships between measured plant parameters and environmental conditions, thus enabling the study of plant genotype-environment interactions. In our approach we aim to better understand how drought stress during the vegetative phase affects growth and physiological plant responses and thus feeds back on seed traits at harvest. In a greenhouse experiment, nine wheat cultivars selected from the ‘10+ Wheat Genomes Project’ were scanned twice a week for approximately 5 months using the 3D phenotyping system 'Plant Eye'. After harvest, biometric seed traits, such as mass and volume of individual seeds, were phenotyped using the ‘phenoSeeder’. Drought stress resulted in a mean plant biomass reduction by 31%, but also induced genotype-specific responses. The CDC Landmark, CDC Stanley, Norin and Weebil cultivars were generally most sensitive to drought stress, while cv Arina, Cadenza, Chinese Spring, Jagger and Mace showed higher tolerance. Seed characteristics showed high variability among cultivars and plant individuals. Mean values of seed mass ranged from 43 mg (Chinese Spring) to 70 mg (Weebil). Generally, intra-genotype distributions of seed volume and mass were rather wide, with at least a factor two between the values for the smallest and biggest seeds. The drought treatment reduced seed mass and volume only in the cv Chinese Spring and Weebil. Moreover, we did not find any effect of drought stress on seed density. Thus, the drought stress effect on seed traits was different from the response seen in plant biomass and yield. Overall, the applied phenotyping tools allowed for a non-invasive quantification of plant and seed responses on genotype, individual plant and single seed level. We believe that the combination of the different phenotyping approaches, seed classification and seed selection will help to more efficiently identify the genetic basis of complex traits such as drought resistance
Ultraviolet-B component of sunlight stimulates photosynthesis and flavonoid accumulation in variegated Plectranthus coleoides leaves depending on background light
We used variegated Plectranthus coleoides as a model plant with the aim of clarifying whether the effects of realistic ultraviolet-B (UV-B) doses on phenolic metabolism in leaves are mediated by photosynthesis. Plants were exposed to UV-B radiation (0.90Wm(-2)) combined with two photosynthetically active radiation (PAR) intensities [395 and 1350molm(-2)s(-1), low light (LL) and high light (HL)] for 9d in sun simulators. Our study indicates that UV-B component of sunlight stimulates CO2 assimilation and stomatal conductance, depending on background light. UV-B-specific induction of apigenin and cyanidin glycosides was observed in both green and white tissues. However, all the other phenolic subclasses were up to four times more abundant in green leaf tissue. Caffeic and rosmarinic acids, catechin and epicatechin, which are endogenous peroxidase substrates, were depleted at HL in green tissue. This was correlated with increased peroxidase and ascorbate peroxidase activities and increased ascorbate content. The UV-B supplement to HL attenuated antioxidative metabolism and partly recovered the phenolic pool indicating stimulation of the phenylpropanoid pathway. In summary, we propose that ortho-dihydroxy phenolics are involved in antioxidative defence in chlorophyllous tissue upon light excess, while apigenin and cyanidin in white tissue have preferentially UV-screening function.This is the peer-reviewed version of the article: [https://imagine.imgge.bg.ac.rs/handle/123456789/1610