25 research outputs found

    Embracing monogenic Parkinson's disease: the MJFF Global Genetic PD Cohort

    Get PDF
    © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.Background: As gene-targeted therapies are increasingly being developed for Parkinson's disease (PD), identifying and characterizing carriers of specific genetic pathogenic variants is imperative. Only a small fraction of the estimated number of subjects with monogenic PD worldwide are currently represented in the literature and availability of clinical data and clinical trial-ready cohorts is limited. Objective: The objectives are to (1) establish an international cohort of affected and unaffected individuals with PD-linked variants; (2) provide harmonized and quality-controlled clinical characterization data for each included individual; and (3) further promote collaboration of researchers in the field of monogenic PD. Methods: We conducted a worldwide, systematic online survey to collect individual-level data on individuals with PD-linked variants in SNCA, LRRK2, VPS35, PRKN, PINK1, DJ-1, as well as selected pathogenic and risk variants in GBA and corresponding demographic, clinical, and genetic data. All registered cases underwent thorough quality checks, and pathogenicity scoring of the variants and genotype-phenotype relationships were analyzed. Results: We collected 3888 variant carriers for our analyses, reported by 92 centers (42 countries) worldwide. Of the included individuals, 3185 had a diagnosis of PD (ie, 1306 LRRK2, 115 SNCA, 23 VPS35, 429 PRKN, 75 PINK1, 13 DJ-1, and 1224 GBA) and 703 were unaffected (ie, 328 LRRK2, 32 SNCA, 3 VPS35, 1 PRKN, 1 PINK1, and 338 GBA). In total, we identified 269 different pathogenic variants; 1322 individuals in our cohort (34%) were indicated as not previously published. Conclusions: Within the MJFF Global Genetic PD Study Group, we (1) established the largest international cohort of affected and unaffected individuals carrying PD-linked variants; (2) provide harmonized and quality-controlled clinical and genetic data for each included individual; (3) promote collaboration in the field of genetic PD with a view toward clinical and genetic stratification of patients for gene-targeted clinical trials. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.Michael J. Fox Foundation for Parkinson's Research. Grant Number: ID 15015.02. NIHR Cambridge Biomedical Research Centre. Grant Number: BRC-1215-20014info:eu-repo/semantics/publishedVersio

    Embracing Monogenic Parkinson's Disease: The MJFF Global Genetic PD Cohort

    Get PDF
    © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.[Background] As gene-targeted therapies are increasingly being developed for Parkinson's disease (PD), identifying and characterizing carriers of specific genetic pathogenic variants is imperative. Only a small fraction of the estimated number of subjects with monogenic PD worldwide are currently represented in the literature and availability of clinical data and clinical trial-ready cohorts is limited.[Objective] The objectives are to (1) establish an international cohort of affected and unaffected individuals with PD-linked variants; (2) provide harmonized and quality-controlled clinical characterization data for each included individual; and (3) further promote collaboration of researchers in the field of monogenic PD.[Methods] We conducted a worldwide, systematic online survey to collect individual-level data on individuals with PD-linked variants in SNCA, LRRK2, VPS35, PRKN, PINK1, DJ-1, as well as selected pathogenic and risk variants in GBA and corresponding demographic, clinical, and genetic data. All registered cases underwent thorough quality checks, and pathogenicity scoring of the variants and genotype–phenotype relationships were analyzed.[Results] We collected 3888 variant carriers for our analyses, reported by 92 centers (42 countries) worldwide. Of the included individuals, 3185 had a diagnosis of PD (ie, 1306 LRRK2, 115 SNCA, 23 VPS35, 429 PRKN, 75 PINK1, 13 DJ-1, and 1224 GBA) and 703 were unaffected (ie, 328 LRRK2, 32 SNCA, 3 VPS35, 1 PRKN, 1 PINK1, and 338 GBA). In total, we identified 269 different pathogenic variants; 1322 individuals in our cohort (34%) were indicated as not previously published.[Conclusions] Within the MJFF Global Genetic PD Study Group, we (1) established the largest international cohort of affected and unaffected individuals carrying PD-linked variants; (2) provide harmonized and quality-controlled clinical and genetic data for each included individual; (3) promote collaboration in the field of genetic PD with a view toward clinical and genetic stratification of patients for gene-targeted clinical trials. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.This project was funded by The Michael J. Fox Foundation (ID 15015.02)Peer reviewe

    Identification of genetic variants associated with Huntington's disease progression: a genome-wide association study

    Get PDF
    Background Huntington's disease is caused by a CAG repeat expansion in the huntingtin gene, HTT. Age at onset has been used as a quantitative phenotype in genetic analysis looking for Huntington's disease modifiers, but is hard to define and not always available. Therefore, we aimed to generate a novel measure of disease progression and to identify genetic markers associated with this progression measure. Methods We generated a progression score on the basis of principal component analysis of prospectively acquired longitudinal changes in motor, cognitive, and imaging measures in the 218 indivduals in the TRACK-HD cohort of Huntington's disease gene mutation carriers (data collected 2008–11). We generated a parallel progression score using data from 1773 previously genotyped participants from the European Huntington's Disease Network REGISTRY study of Huntington's disease mutation carriers (data collected 2003–13). We did a genome-wide association analyses in terms of progression for 216 TRACK-HD participants and 1773 REGISTRY participants, then a meta-analysis of these results was undertaken. Findings Longitudinal motor, cognitive, and imaging scores were correlated with each other in TRACK-HD participants, justifying use of a single, cross-domain measure of disease progression in both studies. The TRACK-HD and REGISTRY progression measures were correlated with each other (r=0·674), and with age at onset (TRACK-HD, r=0·315; REGISTRY, r=0·234). The meta-analysis of progression in TRACK-HD and REGISTRY gave a genome-wide significant signal (p=1·12 × 10−10) on chromosome 5 spanning three genes: MSH3, DHFR, and MTRNR2L2. The genes in this locus were associated with progression in TRACK-HD (MSH3 p=2·94 × 10−8 DHFR p=8·37 × 10−7 MTRNR2L2 p=2·15 × 10−9) and to a lesser extent in REGISTRY (MSH3 p=9·36 × 10−4 DHFR p=8·45 × 10−4 MTRNR2L2 p=1·20 × 10−3). The lead single nucleotide polymorphism (SNP) in TRACK-HD (rs557874766) was genome-wide significant in the meta-analysis (p=1·58 × 10−8), and encodes an aminoacid change (Pro67Ala) in MSH3. In TRACK-HD, each copy of the minor allele at this SNP was associated with a 0·4 units per year (95% CI 0·16–0·66) reduction in the rate of change of the Unified Huntington's Disease Rating Scale (UHDRS) Total Motor Score, and a reduction of 0·12 units per year (95% CI 0·06–0·18) in the rate of change of UHDRS Total Functional Capacity score. These associations remained significant after adjusting for age of onset. Interpretation The multidomain progression measure in TRACK-HD was associated with a functional variant that was genome-wide significant in our meta-analysis. The association in only 216 participants implies that the progression measure is a sensitive reflection of disease burden, that the effect size at this locus is large, or both. Knockout of Msh3 reduces somatic expansion in Huntington's disease mouse models, suggesting this mechanism as an area for future therapeutic investigation

    Dynamic Aspects of Nuclear Architecture: Role of S/MARs in Establishment of active Transcription Units

    Get PDF
    Das Genom eukaryotischer Organismen unterliegt einer strikten Organisation, die eine effektive Regulation zellspezifischer Genexpression ermöglicht. S/MAR-Elemente sind die strukturellen Komponenten der DNA, die das Genom in unabhängig regulierbare Domänen gliedern und sowohl geregelte Replikation als auch gewebespezifische Expression ermöglichen. S/MARs erzielen diese Funktion offenbar durch Anheftung der DNA an die Kernmatrix - eine Funktion, die durch spezifische Struktureigenschaften determiniert wird. Hierbei kommt ihrer hohen Tendenz zur Ausbildung einzelsträngiger Bereiche besondere Bedeutung zu. Diese Eigenschaft liegt dem SIDD-Profil zur Vorhersage von S/MARs aus Sequenzdaten zugrunde. In der vorliegenden Arbeit standen Analysen zur Chromatinstruktur von S/MAR-Elementen im Mittelpunkt. Im Zuge der Genomprojekte zielten bisherige wissenschaftliche Arbeiten häufig auf die Analyse von kodierenden DNA-Regionen. Im Fokus dieser Arbeit steht hingegen die Analyse der intergenischen Bereiche vor allem im Bereich des Interferon-Genclusters im Vergleich zwischen Mensch und Maus und Schimpanse. S/MAR-Elemente wurden identifiziert und ihre Kernmatrix-Bindungseigenschaften miteinander verglichen. Im Rahmen dieser Arbeit wurden zwei unterschiedliche S/MAR Konstrukte mit einem Duplex-Insulator-Konstrukt an fünf verschiedenen definierten genomischen Integrationsorten miteinander verglichen. Ein neues Verfahren, um DNA-Kernmatrix Interaktionen in situ beobachten zu können, ist die Halo-Fluoreszenz-in-situ-Hybridisierung (Halo-FISH). Der Assoziationsstatus von Genen an der Kernmatrix kann Aufschluss über die transkriptionelle Aktivität geben. Deswegen sollte unter anderem der transkriptionell aktive Zustand von o.g. Klonen untersucht werden. Der Integrationsmechanismus von Retroviren wird mit der Kernarchitektur in Zusammenhang gebracht, die ihrerseits die Transkriptionseigenschaften der Proviren determiniert.Eukaryotic DNA is organized into chromatin domains that regulate gene expression and chromosome behavior. Insulators and/or scaffold-matrix attachment regions (S/MARs) mark the boundaries of these chromatin domains where they delimit enhancing and silencing effects from the outside. S/MARs were discovered 2 decades ago, when they were first defined as DNA elements that either remain at the nuclear skeleton after the extraction of histones and other soluble factors in a halo-mapping approach or reassociate with a scaffold or matrix preparation with high affinity in vitro. Halo fluorescence in situ hybridization (halo-FISH) studies confirm that S/MARs act by organizing eukaryotic chromatin into separate loops. Following histone extraction, these loops can be visualized as a DNA halo anchored to the densely stained nuclear matrix or chromosomal scaffold. At a molecular level, S/MAR elements interact with constitutive of the nuclear matrix. By recombinase mediated cassette exchange (RMCE), different types of bordering elements at a number of predefined genomic loci were combined. Flanking an expression vector with either S/MARs or two copies of the non-S/MAR chicken hypersensitive site 4 insulator demonstrates that while these borders confer related expression characteristics at most loci, their effect on chromatin organization is clearly distinct. Despite the rapid progress in sequencing eukaryotic genomes, our current abilities to interpret sequence information are still limited. In this work the INF gene-cluster of human, chimp and mouse was compared. S/MARs were identified and compared in matrix association assays. Integration is an obligatory replication step for all retroviruses. Recent studies in cell lines have shown that retroviruses and retroviral vectors integrate not randomly into their host genome. In this work it was shown via halo-FISH technic that in human leukocytes after SIV infection there is a single copy integrate detectable at the nuclear matrix

    Performance of Genomic Bordering Elements at Predefined Genomic Loci

    Get PDF
    Eukaryotic DNA is organized into chromatin domains that regulate gene expression and chromosome behavior. Insulators and/or scaffold-matrix attachment regions (S/MARs) mark the boundaries of these chromatin domains where they delimit enhancing and silencing effects from the outside. By recombinase-mediated cassette exchange (RMCE), we were able to compare these two types of bordering elements at a number of predefined genomic loci. Flanking an expression vector with either S/MARs or two copies of the non-S/MAR chicken hypersensitive site 4 insulator demonstrates that while these borders confer related expression characteristics at most loci, their effect on chromatin organization is clearly distinct. Our results suggest that the activity of bordering elements is most pronounced for the abundant class of loci with a low but negligible expression potential in the case of highly expressed sites. By the RMCE procedure, we demonstrate that expression parameters are not due to a potential targeting action of bordering elements, in the sense that a linked transgene is directed into a special class of loci. Instead, we can relate the observed transcriptional augmentation phenomena to their function as genomic insulators

    The positive aspects of stress: strain initiates domain decondensation (SIDD)

    No full text
    Abstract The conventional string-based bioinformatic methods of genomic sequence analysis are often insufficient to identify DNA regulatory elements, since many of these do not have a recognizable motif. Even in case a sequence pattern is known to be associated with an element it may only partially mediate its function. This suggests that properties not correlated with the details of base sequence contribute to regulation. One of these attributes is the DNA strandseparation potential, known as SIDD (stress-induced duplex destabilization) which facilitates the access of tracking proteins and the formation of local secondary structures. Using the type 1 interferon gene cluster as a paradigm, we demonstrate that the imprints in a SIDD profile coincide with chromatin domain borders and with DNAse I hypersensitive sites to which regulatory potential could be assigned. The approach permits the computer-guided identification of yet unknown, mostly remote sites and the design of artificial elements with predictable properties for multiple applications
    corecore