45 research outputs found

    Periodic Bursts of Coherent Radio Emission from an Ultracool Dwarf

    Get PDF
    We report the detection of periodic (p = 1.96 hours) bursts of extremely bright, 100% circularly polarized, coherent radio emission from the M9 dwarf TVLM 513-46546. Simultaneous photometric monitoring observations have established this periodicity to be the rotation period of the dwarf. These bursts, which were not present in previous observations of this target, confirm that ultracool dwarfs can generate persistent levels of broadband, coherent radio emission, associated with the presence of kG magnetic fields in a large-scale, stable configuration. Compact sources located at the magnetic polar regions produce highly beamed emission generated by the electron cyclotron maser instability, the same mechanism known to generate planetary coherent radio emission in our solar system. The narrow beams of radiation pass our line of sight as the dwarf rotates, producing the associated periodic bursts. The resulting radio light curves are analogous to the periodic light curves associated with pulsar radio emission highlighting TVLM 513-46546 as the prototype of a new class of transient radio source.Comment: 12 pages, 3 figures, accepted for publication in ApJ Letter

    Revolutionary Concepts of Radiation Shielding for Human Exploration of Space

    Get PDF
    This Technical Memorandum covers revolutionary ideas for space radiation shielding that would mitigate mission costs while limiting human exposure, as studied in a workshop held at Marshall Space Flight Center at the request of NASA Headquarters. None of the revolutionary new ideas examined for the .rst time in this workshop showed clear promise. The workshop attendees felt that some previously examined concepts were de.nitely useful and should be pursued. The workshop attendees also concluded that several of the new concepts warranted further investigation to clarify their value

    Dependence of CMI Growth Rates on Electron Velocity Distributions and Perturbation by Solitary Waves

    Full text link
    We calculate growth rates and corresponding gains for RX and LO mode radiation associated with the cyclotron maser instability for parameterized horseshoe electron velocity distributions. The velocity distribution function was modeled to closely fit the electron distribution functions observed in the auroral cavity. We systematically varied the model parameters as well as the propagation direction to study the dependence of growth rates on model parameters. The growth rate depends strongly on loss cone opening angle, which must be less than 90o90^{o} for significant CMI growth. The growth rate is sharply peaked for perpendicular radiation (k=0k_{\parallel} = 0), with a full-width at half-maximum 1.7o1.7^{o}, in good agreement with observed k-vector orientations and numerical simulations. The fractional bandwidth varied between 104^{-4} and 102^{-2}, depending most strongly on propagation direction. This range encompasses nearly all observed fractional AKR burst bandwidths. We find excellent agreement between the computed RX mode emergent intensities and observed AKR intensities assuming convective growth length LcL_c\approx20-40 km and group speed 0.15cc. The only computed LO mode growth rates compatible observed LO mode radiation levels occurred for number densities more than 100 times the average energetic electron densities measured in auroral cavities. This implies that LO mode radiation is not produced directly by the CMI mechanism but more likely results from mode conversion of RX mode radiation. We find that perturbation of the model velocity distribution by large ion solitary waves (ion holes) can enhance the growth rate by a factor of 2-4. This will result in a gain enhancement more than 40 dB depending on the convective growth length within the structure. Similar enhancements may be caused by EMIC waves.Comment: 21 pages, 11 figures. J. Geophys. Res. 2007 (accepted

    Electric current circuits in astrophysics

    Get PDF
    Cosmic magnetic structures have in common that they are anchored in a dynamo, that an external driver converts kinetic energy into internal magnetic energy, that this magnetic energy is transported as Poynting fl ux across the magnetically dominated structure, and that the magnetic energy is released in the form of particle acceleration, heating, bulk motion, MHD waves, and radiation. The investigation of the electric current system is particularly illuminating as to the course of events and the physics involved. We demonstrate this for the radio pulsar wind, the solar flare, and terrestrial magnetic storms

    Magnetic reconnection driven by electron dynamics

    Get PDF
    Magnetic reconnections play essential roles in space, astrophysical, and laboratory plasmas, where the anti-parallel magnetic field components re-connect and the magnetic energy is converted to the plasma energy as Alfvénic out flows. Although the electron dynamics is considered to be essential, it is highly challenging to observe electron scale reconnections. Here we show the experimental results on an electron scale reconnection driven by the electron dynamics in laser-produced plasmas. We apply a weak-external magnetic field in the direction perpendicular to the plasma propagation, where the magnetic field is directly coupled with only the electrons but not for the ions. Since the kinetic pressure of plasma is much larger than the magnetic pressure, the magnetic field is distorted and locally anti-parallel. We observe plasma collimations, cusp and plasmoid like features with optical diagnostics. The plasmoid propagates at the electron Alfvén velocity, indicating a reconnection driven by the electron dynamics

    Wind anisotropies and GRB progenitors

    Get PDF
    We study the effect of wind anisotropies on the stellar evolution leading to collapsars. Rotating models of a 60 M_\odot star with Ω/Ωcrit=0.75\Omega/\Omega_{\rm crit}=0.75 on the ZAMS, accounting for shellular rotation and a magnetic field, with and without wind anisotropies, are computed at ZZ=0.002 until the end of the core He-burning phase. Only the models accounting for the effects of the wind anisotropies retain enough angular momentum in their core to produce a Gamma Ray Burst (GRB). The chemical composition is such that a type Ic supernova event occurs. Wind anisotropies appear to be a key physical ingredient in the scenario leading to long GRBs.Comment: 5 pages, 4 figures, accepted for publication in A&A Lette

    The Earth: Plasma Sources, Losses, and Transport Processes

    Get PDF
    This paper reviews the state of knowledge concerning the source of magnetospheric plasma at Earth. Source of plasma, its acceleration and transport throughout the system, its consequences on system dynamics, and its loss are all discussed. Both observational and modeling advances since the last time this subject was covered in detail (Hultqvist et al., Magnetospheric Plasma Sources and Losses, 1999) are addressed

    Plasma Sources in Planetary Magnetospheres: Mercury

    Full text link
    corecore