We report the detection of periodic (p = 1.96 hours) bursts of extremely
bright, 100% circularly polarized, coherent radio emission from the M9 dwarf
TVLM 513-46546. Simultaneous photometric monitoring observations have
established this periodicity to be the rotation period of the dwarf. These
bursts, which were not present in previous observations of this target, confirm
that ultracool dwarfs can generate persistent levels of broadband, coherent
radio emission, associated with the presence of kG magnetic fields in a
large-scale, stable configuration. Compact sources located at the magnetic
polar regions produce highly beamed emission generated by the electron
cyclotron maser instability, the same mechanism known to generate planetary
coherent radio emission in our solar system. The narrow beams of radiation pass
our line of sight as the dwarf rotates, producing the associated periodic
bursts. The resulting radio light curves are analogous to the periodic light
curves associated with pulsar radio emission highlighting TVLM 513-46546 as the
prototype of a new class of transient radio source.Comment: 12 pages, 3 figures, accepted for publication in ApJ Letter