27 research outputs found

    Network meta-analysis of food and drug administration-approved treatment options for adults with aquaporin-4 immunoglobulin G-positive neuromyelitis optica spectrum disorder

    Get PDF
    INTRODUCTION: Neuromyelitis optica spectrum disorder (NMOSD) is an autoimmune disease defined by attacks on the central nervous system that cause irreversible damage. Recent approval of NMOSD therapies warrants investigations of comparative efficacy to inform treatment decisions. METHODS: A network meta-analysis (NMA) of all U.S. Food and Drug Administration-approved therapies (eculizumab, inebilizumab, and satralizumab) for adults with aquaporin-4 immunoglobulin G-positive (AQP4+) NMOSD was conducted via a systematic literature review (SLR) using data from randomized controlled trials (RCTs). Database searches of MEDLINE, EMBASE, and the Cochrane Central Register of Controlled Trials were executed for the SLR. A fixed-effects proportional hazards Bayesian NMA was used to estimate relative treatment effects based on data extracted from RCTs identified during the SLR (search end date: 11 September 2020). Four unique RCTs (N-MOmentum, PREVENT, SAkuraSky, and SAkuraStar) were identified, and data from 29 publications were extracted for analysis. Network scenarios describing the most comparable patient population groups (such as by treatment settings) were evaluated in our analyses. Relative treatment effects were evaluated based on time-to-first relapse and were expressed as hazard ratios (HRs) with 95% credible intervals (CrIs). RESULTS: In patients treated with a monoclonal antibody only, eculizumab was associated with a lower risk of relapse compared with satralizumab (HR 0.10, 95% CrI 0.01, 0.65) and inebilizumab (HR 0.11, 95% CrI 0.02, 0.68). In patients treated with monoclonal antibody with or without background immunosuppressive therapy (IST), patients treated with eculizumab ± IST were also less likely to relapse than patients treated with satralizumab ± IST (HR 0.24, 95% CrI 0.06, 0.98). CONCLUSION: The NMA results suggest that complement component 5 (C5) inhibition prevents NMOSD relapses more effectively than broader mechanisms of action

    Serum neurofilament light chain levels at attack predict post-attack disability worsening and are mitigated by inebilizumab: analysis of four potential biomarkers in neuromyelitis optica spectrum disorder

    Get PDF
    OBJECTIVE: To investigate relationships between serum neurofilament light chain (sNfL), ubiquitin C-terminal hydrolase L1 (sUCHL1), tau (sTau) and glial fibrillary acidic protein (sGFAP) levels and disease activity/disability in neuromyelitis optica spectrum disorder (NMOSD), and the effects of inebilizumab on these biomarkers in N-MOmentum. METHODS: N-MOmentum randomised participants to receive inebilizumab or placebo with a randomised controlled period (RCP) of 28 weeks and an open-label follow-up period of ≥2 years. The sNfL, sUCHL1, sTau and sGFAP were measured using single-molecule arrays in 1260 scheduled and attack-related samples from N-MOmentum participants (immunoglobulin G (IgG) autoantibodies to aquaporin-4-positive, myelin oligodendrocyte glycoprotein-IgG-positive or double autoantibody-negative) and two control groups (healthy donors and patients with relapsing-remitting multiple sclerosis). RESULTS: The concentration of all four biomarkers increased during NMOSD attacks. At attack, sNfL had the strongest correlation with disability worsening during attacks (Spearman R(2)=0.40; p=0.01) and prediction of disability worsening after attacks (sNfL cut-off 32 pg/mL; area under the curve 0.71 (95% CI 0.51 to 0.89); p=0.02), but only sGFAP predicted upcoming attacks. At RCP end, fewer inebilizumab-treated than placebo-treated participants had sNfL>16 pg/mL (22% vs 45%; OR 0.36 (95% CI 0.17 to 0.76); p=0.004). CONCLUSIONS: Compared with sGFAP, sTau and sUCHL1, sNfL at attack was the strongest predictor of disability worsening at attack and follow-up, suggesting a role for identifying participants with NMOSD at risk of limited post-relapse recovery. Treatment with inebilizumab was associated with lower levels of sGFAP and sNfL than placebo. TRIAL REGISTRATION NUMBER: NCT02200770

    Attack adjudication in neuromyelitis optica spectrum disorder: Substantiation of criteria by magnetic resonance imaging and biomarkers in N-MOmentum

    Get PDF
    BACKGROUND: The N-MOmentum trial investigated safety and efficacy of inebilizumab in participants with neuromyelitis optica spectrum disorder (NMOSD). OBJECTIVE: Evaluate the attack identification process and adjudication committee (AC) performance in N-MOmentum. METHODS: Adults ((n) = 230) with NMOSD and Expanded Disability Status Scale score ?8 were randomized (3:1) to inebilizumab 300 mg or placebo. The randomized controlled period was 28 weeks or until adjudicated attack. Attacks were adjudicated according to 18 predefined criteria. Magnetic resonance imaging (MRI) and biomarker (serum glial fibrillary acidic protein [sGFAP]) analyses were performed. RESULTS: A total of 64 participant-reported neurological events occurred; 51 (80%) were investigator-determined to be attacks. The AC confirmed 43 of the investigator-determined attacks (84%). There was high inter- and intra-AC-member agreement. In 25/64 events (39%) and 14/43 AC-adjudicated attacks (33%), MRI was reviewed during adjudication. Retrospective analysis revealed new domain-specific T1 and T2 MRI lesions in 90% of adjudicated attacks. Increased mean sGFAP concentrations (>2-fold change) from baseline were observed in 56% of adjudicated attacks versus 14% of investigator-determined attacks rejected by the AC and 31% of participant-reported events determined not to be attacks. CONCLUSION: AC adjudication of NMOSD attacks according to predefined criteria appears robust. MRI lesion correlates and sGFAP elevations were found in most adjudicated attacks

    AQP4-IgG-seronegative patient outcomes in the N-MOmentum trial of inebilizumab in neuromyelitis optica spectrum disorder

    Get PDF
    BACKGROUND: The N-MOmentum trial, a double-blind, randomized, placebo-controlled, phase 2/3 study of inebilizumab in neuromyelitis optica spectrum disorder (NMOSD), enrolled participants who were aquaporin-4-immunoglobulin G (AQP4-IgG)-seropositive (AQP4+) or -seronegative (AQP4−). This manuscript reports AQP4− participant outcomes. METHODS: AQP4-IgG serostatus was determined for all screened participants by a central laboratory, using a validated, fluorescence-observation cell-binding assay. Medical histories and screening data for AQP4− participants were assessed independently by an eligibility committee of three clinical experts during screening. Diagnosis of NMOSD was confirmed by majority decision using the 2006 neuromyelitis optica criteria. Myelin oligodendrocyte glycoprotein-immunoglobulin G (MOG-IgG) serology (using a clinically validated, flow cytometry assay) and annualized attack rates (AARs) were evaluated post hoc. Efficacy outcomes were assessed by comparing pre-study and on-study AARs in treated participants. RESULTS: Only 18/50 AQP4− screened participants (36%) were initially considered eligible for randomization; 16 were randomized and received full treatment, 4 to placebo (1 MOG-IgG-seropositive [MOG+]) and 12 to inebilizumab (6 MOG+). The most common reason for failure to pass screening among prospective AQP4− participants was failure to fulfill the 2006 NMO MRI criteria. In inebilizumab-treated AQP4− participants, on-study AARs (95% confidence interval [CI]) calculated from treatment initiation (whether from randomization or when received at the start of the open-label period) to the end of study were lower than pre-study rates: for all AQP4− participants (n = 16), mean (95% CI) AAR was 0.048 (0.02–0.15) versus 1.70 (0.74–2.66), respectively. For the subset of AQP4−/MOG+ participants (n = 7), AAR was 0.043 (0.006–0.302) after treatment versus 1.93 (1.10–3.14) before the study. For the subset of AQP4−/MOG− participants (n = 9), post-treatment AAR was 0.051 (0.013–0.204) versus 1.60 (1.02–2.38). Three attacks occurred during the randomized controlled period in the AQP4− inebilizumab group and were of mild severity; no attacks occurred in the AQP4− placebo group. The low number of participants receiving placebo (n = 4) confounds direct comparison with the inebilizumab group. No attacks were seen in any AQP4− participant after the second infusion of inebilizumab. Inebilizumab was generally well tolerated by AQP4− participants and the adverse event profile observed was similar to that of AQP4+ participants. CONCLUSION: The high rate of rejection of AQP4− participants from enrollment into the study highlights the challenges of implementing the diagnostic criteria of AQP4− NMOSD. An apparent reduction of AAR in participants with AQP4− NMOSD who received inebilizumab warrants further investigation

    Multi-system neurological disease is common in patients with OPA1 mutations

    Get PDF
    Additional neurological features have recently been described in seven families transmitting pathogenic mutations in OPA1, the most common cause of autosomal dominant optic atrophy. However, the frequency of these syndromal ‘dominant optic atrophy plus’ variants and the extent of neurological involvement have not been established. In this large multi-centre study of 104 patients from 45 independent families, including 60 new cases, we show that extra-ocular neurological complications are common in OPA1 disease, and affect up to 20% of all mutational carriers. Bilateral sensorineural deafness beginning in late childhood and early adulthood was a prominent manifestation, followed by a combination of ataxia, myopathy, peripheral neuropathy and progressive external ophthalmoplegia from the third decade of life onwards. We also identified novel clinical presentations with spastic paraparesis mimicking hereditary spastic paraplegia, and a multiple sclerosis-like illness. In contrast to initial reports, multi-system neurological disease was associated with all mutational subtypes, although there was an increased risk with missense mutations [odds ratio = 3.06, 95% confidence interval = 1.44–6.49; P = 0.0027], and mutations located within the guanosine triphosphate-ase region (odds ratio = 2.29, 95% confidence interval = 1.08–4.82; P = 0.0271). Histochemical and molecular characterization of skeletal muscle biopsies revealed the presence of cytochrome c oxidase-deficient fibres and multiple mitochondrial DNA deletions in the majority of patients harbouring OPA1 mutations, even in those with isolated optic nerve involvement. However, the cytochrome c oxidase-deficient load was over four times higher in the dominant optic atrophy + group compared to the pure optic neuropathy group, implicating a causal role for these secondary mitochondrial DNA defects in disease pathophysiology. Individuals with dominant optic atrophy plus phenotypes also had significantly worse visual outcomes, and careful surveillance is therefore mandatory to optimize the detection and management of neurological disability in a group of patients who already have significant visual impairment

    Long-term safety and efficacy of Eculizumab in Aquaporin-4 IgG-positive NMOSD

    Get PDF
    Objective During PREVENT (NCT01892345), eculizumab significantly reduced relapse risk versus placebo in patients with aquaporin-4 immunoglobulin G-positive neuromyelitis optica spectrum disorder (AQP4-IgG+ NMOSD). We report an interim analysis of PREVENT's ongoing open-label extension (OLE; NCT02003144) evaluating eculizumab's long-term safety and efficacy. Methods Patients who completed PREVENT could enroll in the OLE to receive eculizumab (maintenance dose = 1,200 mg/2 weeks, after a blinded induction phase). Safety and efficacy data from PREVENT and its OLE (interim data cut, July 31, 2019) were combined for this analysis. Results Across PREVENT and the OLE, 137 patients received eculizumab and were monitored for a median (range) of 133.3 weeks (5.1–276.9 weeks), for a combined total of 362.3 patient-years (PY). Treatment-related adverse event (AE) and serious adverse event (SAE) rates were 183.5 in 100 PY and 8.6 in 100 PY, respectively. Serious infection rates were 10.2 in 100 PY in eculizumab-treated patients versus 15.1 in 100 PY in the PREVENT placebo group. No patient developed a meningococcal infection. At 192 weeks (3.7 years), 94.4% (95% confidence interval [CI], 88.6–97.3) of patients remained adjudicated relapse-free. The adjudicated annualized relapse rate was 0.025 (95% CI = 0.013–0.048) in all eculizumab-treated patients versus 0.350 (95% CI = 0.199–0.616) in the PREVENT placebo group. During the OLE, 37% of patients (44 of 119 patients) stopped or decreased background immunosuppressive therapy use. Interpretation This analysis demonstrates that eculizumab's long-term safety profile in NMOSD is consistent with its established profile across other indications. This analysis also demonstrated the sustained ability of long-term eculizumab treatment to reduce relapse risk in patients with AQP4-IgG+ NMOSD. ANN NEUROL 2021;89:1088–109
    corecore