112 research outputs found

    Cities, traffic, and CO2: A multidecadal assessment of trends, drivers, and scaling relationships

    Full text link
    Emissions of CO2 from road vehicles were 1.57 billion metric tons in 2012, accounting for 28% of US fossil fuel CO2 emissions, but the spatial distributions of these emissions are highly uncertain. We develop a new emissions inventory, the Database of Road Transportation Emissions (DARTE), which estimates CO2 emitted by US road transport at a resolution of 1 km annually for 1980-2012. DARTE reveals that urban areas are responsible for 80% of on-road emissions growth since 1980 and for 63% of total 2012 emissions. We observe nonlinearities between CO2 emissions and population density at broad spatial/temporal scales, with total on-road CO2 increasing nonlinearly with population density, rapidly up to 1,650 persons per square kilometer and slowly thereafter. Per capita emissions decline as density rises, but at markedly varying rates depending on existing densities. We make use of DARTE's bottom-up construction to highlight the biases associated with the common practice of using population as a linear proxy for disaggregating national- or state-scale emissions. Comparing DARTE with existing downscaled inventories, we find biases of 100% or more in the spatial distribution of urban and rural emissions, largely driven by mismatches between inventory downscaling proxies and the actual spatial patterns of vehicle activity at urban scales. Given cities' dual importance as sources of CO2 and an emerging nexus of climate mitigation initiatives, high-resolution estimates such as DARTE are critical both for accurately quantifying surface carbon fluxes and for verifying the effectiveness of emissions mitigation efforts at urban scales.https://doi.org/10.1073/pnas.1421723112Published versio

    Penguins and seals transport limiting nutrients between offshore pelagic and coastal regions of Antarctica under changing sea ice

    Full text link
    Large animals such as sea birds and marine mammals can transport limiting nutrients between different regions of the ocean, thereby stimulating and enhancing productivity. In Antarctica this process is influenced by formation and breakup of sea ice and its influence on the feeding behaviour of predators and their prey. We used analyses of bioactive metals (for example, Fe, Co, Mn), macronutrients (for example, N) and stable isotopes (δ13C and δ15N) in the excreta of Adélie (Pygoscelis adeliae) and emperor penguins (Aptenodytes forsteri) as well as Weddell seals (Leptonychotes weddellii) from multiple sites, among multiple years (2012–2014) to resolve how changes in sea ice dynamics, as indicated by MODIS satellite images, were coincident with prey switching and likely changes in nutrient fluxes between the offshore pelagic and coastal zones. We also sampled excreta of the south polar skua (Stercorarius maccormicki), which preys on penguins and scavenges the remains of both penguins and seals. We found strong coincidence of isotopic evidence for prey switching, between euphausiids (Euphausia superba and E. crystallorophias) and pelagic/cryopelagic fishes (for example, Pleuragramma antarcticum) in penguins, and between pelagic/cryopelagic fishes and Antarctic toothfish (Dissostichus mawsoni) in Weddell seals, with changes in sea ice cover among years. Further, prey switching was strongly linked to changes in the concentrations of nutrients (Fe and N) deposited in coastal environments by both penguins and seals. Our findings have important implications for understanding how the roles of large animals in supporting coastal productivity may shift with environmental conditions in polar ecosystems.Accepted manuscrip

    Proline provides site-specific flexibility for in vivo collagen.

    Get PDF
    Fibrillar collagens have mechanical and biological roles, providing tissues with both tensile strength and cell binding sites which allow molecular interactions with cell-surface receptors such as integrins. A key question is: how do collagens allow tissue flexibility whilst maintaining well-defined ligand binding sites? Here we show that proline residues in collagen glycine-proline-hydroxyproline (Gly-Pro-Hyp) triplets provide local conformational flexibility, which in turn confers well-defined, low energy molecular compression-extension and bending, by employing two-dimensional 13C-13C correlation NMR spectroscopy on 13C-labelled intact ex vivo bone and in vitro osteoblast extracellular matrix. We also find that the positions of Gly-Pro-Hyp triplets are highly conserved between animal species, and are spatially clustered in the currently-accepted model of molecular ordering in collagen type I fibrils. We propose that the Gly-Pro-Hyp triplets in fibrillar collagens provide fibril "expansion joints" to maintain molecular ordering within the fibril, thereby preserving the structural integrity of ligand binding sites.BBSRC, EPSRC, Raymond and Beverly Sackler Fund for Physics of Medicine, Wellcome Trust, ER

    Living alone and mental health: parallel analyses in UK longitudinal population surveys and electronic health records prior to and during the COVID-19 pandemic

    Get PDF
    BACKGROUND: People who live alone experience greater levels of mental illness; however, it is unclear whether the COVID-19 pandemic had a disproportionately negative impact on this demographic. OBJECTIVE: To describe the mental health gap between those who live alone and with others in the UK prior to and during the COVID-19 pandemic. METHODS: Self-reported psychological distress and life satisfaction in 10 prospective longitudinal population surveys (LPSs) assessed in the nearest pre-pandemic sweep and three periods during the pandemic. Recorded diagnosis of common and severe mental illnesses between March 2018 and January 2022 in electronic healthcare records (EHRs) within the OpenSAFELY-TPP. FINDINGS: In 37 544 LPS participants, pooled models showed greater psychological distress (standardised mean difference (SMD): 0.09 (95% CI: 0.04; 0.14); relative risk: 1.25 (95% CI: 1.12; 1.39)) and lower life satisfaction (SMD: −0.22 (95% CI: −0.30; −0.15)) for those living alone pre-pandemic. This gap did not change during the pandemic. In the EHR analysis of c.16 million records, mental health conditions were more common in those who lived alone (eg, depression 26 (95% CI: 18 to 33) and severe mental illness 58 (95% CI: 54 to 62) more cases more per 100 000). For common mental health disorders, the gap in recorded cases in EHRs narrowed during the pandemic. CONCLUSIONS: People living alone have poorer mental health and lower life satisfaction. During the pandemic, this gap in self-reported distress remained; however, there was a narrowing of the gap in service use. CLINICAL IMPLICATIONS: Greater mental health need and potentially greater barriers to mental healthcare access for those who live alone need to be considered in healthcare planning

    HLA-E-restricted SARS-CoV-2-specific T cells from convalescent COVID-19 patients suppress virus replication despite HLA class Ia down-regulation

    Get PDF
    Pathogen-specific CD8+ T cell responses restricted by the nonpolymorphic nonclassical class Ib molecule human leukocyte antigen E (HLA-E) are rarely reported in viral infections. The natural HLA-E ligand is a signal peptide derived from classical class Ia HLA molecules that interact with the NKG2/CD94 receptors to regulate natural killer cell functions, but pathogen-derived peptides can also be presented by HLA-E. Here, we describe five peptides from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that elicited HLA-E–restricted CD8+ T cell responses in convalescent patients with coronavirus disease 2019. These T cell responses were identified in the blood at frequencies similar to those reported for classical HLA-Ia–restricted anti–SARS-CoV-2 CD8+ T cells. HLA-E peptide–specific CD8+ T cell clones, which expressed diverse T cell receptors, suppressed SARS-CoV-2 replication in Calu-3 human lung epithelial cells. SARS-CoV-2 infection markedly down-regulated classical HLA class I expression in Calu-3 cells and primary reconstituted human airway epithelial cells, whereas HLA-E expression was not affected, enabling T cell recognition. Thus, HLA-E–restricted T cells could contribute to the control of SARS-CoV-2 infection alongside classical T cells

    Treg and CTLA-4: Two intertwining pathways to immune tolerance.

    Get PDF
    Both the CTLA-4 pathway and regulatory T cells (Treg) are essential for the control of immune homeostasis. Their therapeutic relevance is highlighted by the increasing use of anti-CTLA-4 antibody in tumor therapy and the development of Treg cell transfer strategies for use in autoimmunity and transplantation settings. The CTLA-4 pathway first came to the attention of the immunological community in 1995 with the discovery that mice deficient in Ctla-4 suffered a fatal lymphoproliferative syndrome. Eight years later, mice lacking the critical Treg transcription factor Foxp3 were shown to exhibit a remarkably similar phenotype. Much of the debate since has centered on the question of whether Treg suppressive function requires CTLA-4. The finding that it does in some settings but not in others has provoked controversy and inevitable polarization of opinion. In this article, I suggest that CTLA-4 and Treg represent complementary and largely overlapping mechanisms of immune tolerance. I argue that Treg commonly use CTLA-4 to effect suppression, however CTLA-4 can also function in the non-Treg compartment while Treg can invoke CTLA-4-independent mechanisms of suppression. The notion that Foxp3 and CTLA-4 direct independent programs of immune regulation, which in practice overlap to a significant extent, will hopefully help move us towards a better appreciation of the underlying biology and therapeutic significance of these pathways

    Prisoners’ Families’ Research: Developments, Debates and Directions

    Get PDF
    After many years of relative obscurity, research on prisoners’ families has gained significant momentum. It has expanded from case-oriented descriptive analyses of family experiences to longitudinal studies of child and family development and even macro analyses of the effects on communities in societies of mass incarceration. Now the field engages multi-disciplinary and international interest although it arguably still remains on the periphery of mainstream criminological, psychological and sociological research agendas. This chapter discusses developments in prisoners’ families’ research and its positioning in academia and practice. It does not aim to provide an all-encompassing review of the literature rather it will offer some reflections on how and why the field has developed as it has and on its future directions. The chapter is divided into three parts. The first discusses reasons for the historically small body of research on prisoners’ families and for the growth in research interest over the past two decades. The second analyses patterns and shifts in the focus of research studies and considers how the field has been shaped by intersecting disciplinary interests of psychology, sociology, criminology and socio-legal studies. The final part reflects on substantive and ethical issues that are likely to shape the direction of prisoners’ families’ research in the future

    HLA-E-restricted SARS-CoV-2-specific T cells from convalescent COVID-19 patients suppress virus replication despite HLA class Ia down-regulation

    Get PDF
    Pathogen-specific CD8+ T cell responses restricted by the nonpolymorphic nonclassical class Ib molecule human leukocyte antigen E (HLA-E) are rarely reported in viral infections. The natural HLA-E ligand is a signal peptide derived from classical class Ia HLA molecules that interact with the NKG2/CD94 receptors to regulate natural killer cell functions, but pathogen-derived peptides can also be presented by HLA-E. Here, we describe five peptides from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that elicited HLA-E-restricted CD8+ T cell responses in convalescent patients with coronavirus disease 2019. These T cell responses were identified in the blood at frequencies similar to those reported for classical HLA-Ia-restricted anti-SARS-CoV-2 CD8+ T cells. HLA-E peptide-specific CD8+ T cell clones, which expressed diverse T cell receptors, suppressed SARS-CoV-2 replication in Calu-3 human lung epithelial cells. SARS-CoV-2 infection markedly down-regulated classical HLA class I expression in Calu-3 cells and primary reconstituted human airway epithelial cells, whereas HLA-E expression was not affected, enabling T cell recognition. Thus, HLA-E-restricted T cells could contribute to the control of SARS-CoV-2 infection alongside classical T cells

    RA-MAP, molecular immunological landscapes in early rheumatoid arthritis and healthy vaccine recipients

    Get PDF
    Rheumatoid arthritis (RA) is a chronic inflammatory disorder with poorly defined aetiology characterised by synovial inflammation with variable disease severity and drug responsiveness. To investigate the peripheral blood immune cell landscape of early, drug naive RA, we performed comprehensive clinical and molecular profiling of 267 RA patients and 52 healthy vaccine recipients for up to 18 months to establish a high quality sample biobank including plasma, serum, peripheral blood cells, urine, genomic DNA, RNA from whole blood, lymphocyte and monocyte subsets. We have performed extensive multi-omic immune phenotyping, including genomic, metabolomic, proteomic, transcriptomic and autoantibody profiling. We anticipate that these detailed clinical and molecular data will serve as a fundamental resource offering insights into immune-mediated disease pathogenesis, progression and therapeutic response, ultimately contributing to the development and application of targeted therapies for RA.</p
    • …
    corecore