1,203 research outputs found

    Success Despite the Odds: Achieving Academic Success with Spanish-Speaking English as a Second Language Students

    Get PDF
    The changing cultural demographics of many Center City schools have increased the need for English as a Second Language programs throughout the district. In an effort to meet the educational needs of a growing population of non-English speaking students and families, teachers and researchers developed many curricular models. Using language acquisition models developed over the last century, educators in this district and throughout our nation strived to simultaneously teach English Language Learners academic subjects and the English language . However, despite these developments, not all schools with English as a Second Language students, implemented and maintained academically successful programs for these children. The objective of this study was to first define and identify a curricular model and school within the Center City School district that demonstrated academic success with Spanish-Speaking. Using research based literature that addresses effective schools, school leadership, and effective educational models for ESL students, I established a standard that I could use for comparison. Having accomplished that prerequisite, I examined the factors that contributed to ensuring the academic success of impoverished Latino children in a specific urban school’s ESL program

    Kierkegaard's Irony in the "Diapsalmata"

    Get PDF
    Kierkegaard's Irony in the "Diapsalmata

    Modelling and simulation of biased agonism dynamics at a G protein-coupled receptor.

    Get PDF
    Theoretical models of G protein-coupled receptor (GPCR) concentration-response relationships often assume an agonist producing a single functional response via a single active state of the receptor. These models have largely been analysed assuming steady-state conditions. There is now much experimental evidence to suggest that many GPCRs can exist in multiple receptor conformations and elicit numerous functional responses, with ligands having the potential to activate different signalling pathways to varying extents-a concept referred to as biased agonism, functional selectivity or pluri-dimensional efficacy. Moreover, recent experimental results indicate a clear possibility for time-dependent bias, whereby an agonist's bias with respect to different pathways may vary dynamically. Efforts towards understanding the implications of temporal bias by characterising and quantifying ligand effects on multiple pathways will clearly be aided by extending current equilibrium binding and biased activation models to include G protein activation dynamics. Here, we present a new model of time-dependent biased agonism, based on ordinary differential equations for multiple cubic ternary complex activation models with G protein cycle dynamics. This model allows simulation and analysis of multi-pathway activation bias dynamics at a single receptor for the first time, at the level of active G protein (αGTP), towards the analysis of dynamic functional responses. The model is generally applicable to systems with NG G proteins and N* active receptor states. Numerical simulations for NG=N*=2 reveal new insights into the effects of system parameters (including cooperativities, and ligand and receptor concentrations) on bias dynamics, highlighting new phenomena including the dynamic inter-conversion of bias direction. Further, we fit this model to 'wet' experimental data for two competing G proteins (Gi and Gs) that become activated upon stimulation of the adenosine A1 receptor with adenosine derivative compounds. Finally, we show that our model can qualitatively describe the temporal dynamics of this competing G protein activation

    Structural behaviour of copper chloride catalysts during the chlorination of CO to phosgene

    Get PDF
    The interaction of CO with an attapulgite-supported Cu(II)Cl2 catalyst has been examined in a micro-reactor arrangement. CO exposure to the dried, as-received catalyst at elevated temperatures leads to the formation of CO2 as the only identifiable product. However, phosgene production can be induced by a catalyst pre-treatment where the supported Cu(II)Cl2 sample is exposed to a diluted stream of chlorine. Subsequent CO exposure at ~ 370°C then leads to phosgene production. In order to investigate the origins of this atypical set of reaction characteristics, a series of x-ray absorption experiments were performed that were supplemented by DFT calculations. XANES measurements establish that at the elevated temperatures connected with phosgene formation, the catalyst is comprised of Cu+ and a small amount of Cu2+. Moreover, the data show that unique to the chlorine pre-treated sample, CO exposure at elevated temperature results in a short-lived oxidation of the copper. On the basis of calculated CO adsorption energies, DFT calculations indicate that a mixed Cu+/Cu2+ catalyst is required to support CO chemisorption

    A Neural-Endocrine Architecture for Foraging in Swarm Robotic Systems

    Get PDF
    Abstract This paper presents the novel use of the Neural-endocrine architecture for swarm robotic systems. We make use of a number of behaviours to give rise to emergent swarm behaviour to allow a swarm of robots to collaborate in the task of foraging. Results show that the architecture is amenable to such a task, with the swarm being able to successfully complete the required task.
    • …
    corecore