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A Neural-Endocrine Architecture for Foraging
in Swarm Robotic Systems

Jon Timmis and Lachlan Murray and Mark Neal

Abstract This paper presents the novel use of the Neural-endocrine architecture
for swarm robotic systems. We make use of a number of behaviours to give rise
to emergent swarm behaviour to allow a swarm of robots to collaborate in the task
of foraging. Results show that the architecture is amenable to such a task, with the
swarm being able to successfully complete the required task.

1 Introduction

Swarm robotic systems have many potential uses, ranging from the cleanup of haz-
ardous waste or search and rescue operations at disaster sites that are often too
dangerous for humans to respond effectively to or areas that need large coverage
for monitoring (such as the ocean) and are simply too large a task for a single robot
to cope. Good reviews of swarm robotics and associated issues can be found in
Winfield and Nembrini (2006) and Şahin and Winfield (2008). However, in order
to develop such systems, the task of foraging is used as a standard test arena for
new approaches. Foraging is a popular task for mobile autonomous robots, both
individual robots and swarms have been shown to successfully complete various
types of foraging problem. The basic principles of foraging involve an agent col-
lecting objects that are spread throughout the environment and returning them to
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some specified location. The task is completed once all of the objects in the envi-
ronment have been collected. Part of our on-going work is the development of a
neural-endocrine architecture for deployment in ocean going robotic systems, and
the eventual construction of a swarm of ocean going vessels that would be able to
operate for prolonged periods of time.

This paper investigates and extends our previous work on a neural endocrine con-
trol architecture developed in Neal and Timmis (2003, 2005); Vargas et al (2005);
Timmis et al (2009). Until now its effectiveness at controlling a collection of robots
has not been investigated, though work on using two robots has been undertaken
in the context of task switching Walker and Wilson (2008). The addition of more
robots brings added complexity to the system, it is necessary that a multi-robot con-
trol system not only encompasses the ability to control individual robots, but is also
capable of appropriately handling the interactions with other robots. If we are to
work towards developing an ocean going version of such a system then the under-
standing of the ability of our architecture to operate in a swarm of robots is essential.
In order to assess the effectiveness of the system it was necessary to design a task for
the robots performance to be measured on, the task chosen was a variant of foraging
and was one of the most complicated tasks that the neural endocrine control archi-
tecture has been applied to. Specifically, in this paper we: investigate whether the
neural endocrine control architecture is capable of controlling a multi-robot system;
investigate how effective the architecture is at controlling a multi-robot system and
investigate the capabilities of the architecture at a new and complex task.

2 Neural Endocrine Control Architecture

The neural endocrine control architecture of Neal and Timmis (2003) is a combi-
nation of standard perceptron artificial neural networks, with a novel artificial en-
docrine system that has the ability to affect the weights of the neural networks,
depending on external and internal factors. Here we review the basic neural en-
docrine architecture, for a more detailed description the reader is directed to Neal
and Timmis (2005); Timmis et al (2009).

2.1 Artificial Endocrine Systems

The Artificial Endocrine System (AES) described here is based on the original de-
sign proposed by Neal and Timmis (2003, 2005) as well as subsequent modifications
made by Timmis et al (2009).

As is the case in the biological endocrine system, the two main components of
an AES are glands and hormones. Artificial glands (g) release artificial hormones
when they are stimulated. Stimulation can be caused by both the internal state of the
system and external stimuli. In Timmis et al (2009) signal values Ai were obtained
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by summing sensor inputs and similar gland activation values were calculated from
the combination of sensor values and the internal state of the robot. The stimulation
of a gland (Rg) as given by Timmis et al (2009) is shown in equation 1 where αg is
the stimulation rate, that is the rate at which a hormone is released from a gland g.

Rg(t) = αg ∑
i

Ai(t) (1)

Our previous work, unpublished, investigated a second method of stimulation
that also takes into account the current concentration of hormone cg(t) this is given
by equation 2. As can be seen in equation 2 the amount of hormone released in
this method is subject to a negative feedback mechanism, the reason for including
this is to prevent the system from becoming over saturated with a particular type of
hormone.

Rg(t) =
αg

1+ cg(t−1) ∑
i

Ai(t) (2)

Every hormone has an associated decay rate (βg) which takes a value from [0,1],
this means that without stimulation the concentration of a hormone will eventually
be reduced to an insignificant amount. The concentration of a particular hormone cg
at time t +1 is given by equation 3.

cg(t +1) = βgcg(t)+Rg(t +1) (3)

2.2 Neural Endocrine Systems

Artificial hormones can only affect artificial neurons. In line with the biological
endocrine system not all of the neurons in a system will be sensitive to all hormones,
the sensitivity of a neuron i to the hormone released by a particular gland g is given
by sig. The effect that hormones have on neurons can be calculated by equation
4 which takes into account the sensitivity of inputs to particular hormones and the
concentration of those hormones using an artificial endocrine system with ng glands.

u =
nx

∑
i=0

xi·wi

ng

∑
g=0

cg·sig (4)

The most common form of coordination between networks is a cooperative ap-
proach whereby the outputs of each network are simply summed together. The re-
sulting behaviour of a multi-network neural endocrine system is dependent on the
current hormone levels of the system. High levels of a particular hormone will affect
some networks more than others, giving these networks more or less influence over
the global result when the network outputs are summed together.
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3 System Design

3.1 Behaviours

In this work, we make use of eleven different behaviours, the majority of which
can be categorised into the three different groups: taxes, reflexes and fixed-action
patterns (FAP). One of the behaviours, wander, can not easily be classified by type.
We also observe resultant emergent behaviours not programmed into the system.

Wander: A wander behaviour is necessary to ensure that robots keep exploring
the environment even if none of their other behaviours are currently being stimu-
lated, without a wander behaviour an unstimulated robot would just remain station-
ary. To implement a wander behaviour we take into account the current hormone
levels of the system.

3.1.1 Reflexes

Reflexes are involuntary, spontaneous responses to stimuli, which last only as long
as the stimulus that initiates them. The foraging task of this work requires only a
single reflex behaviour. Because of their spontaneous and sporadic nature reflex be-
haviours do not require a neural endocrine control network, their response is simply
tied directly to their stimulus.

Signal bin: As robots will have no awareness of the location of the bin, in order
to improve their chances of finding it a signal bin behaviour is required, allowing
robots to communicate the approximate location of the bin to others. In this case,
robots signal that the bin is in their vicinity by the use of a light or beacon. The
strength of the response should always be the same, i.e. the brightness of the light
should not be effected by the closeness of the bin, it should either be on if the bin is
in-sight, or off otherwise.

3.1.2 Taxes

Taxes are behavioural responses that cause agents to move towards, or away from
certain stimuli. This work involves six taxes behaviours, two of which are repellent
and four of which are attractive. Taxes behaviours are well suited to control using
neural endocrine networks because both their inputs and outputs are continuous and
should vary according to the current state of the system, i.e. the hormone levels.
Robots have the capability of signalling via an LED, and observing that signal on
other robots.

Obstacle avoid: Prevents robots from crashing into the walls of the environment,
or obstacles within the environment. The response of an obstacle avoid behaviour
should be proportional to the distance between a robot and its nearest obstacle, such
that a robot responds more urgently to obstacles that are nearer. The inputs to the
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network of an obstacle avoid behaviour come from a range finding sensor, for ex-
ample a sonar.

Separation: Prevents robots from crashing into each other. The stimuli of a sep-
aration behaviour, also the inputs to the behaviour’s network, are the locations of
other robots, these can be determine using a camera device. In a similar manner to
obstacle avoidance, the strength of a response should be proportional to the distance
between a robot and its neighbours, such that the closer a fellow robot is, the faster
the robot should retreat.

Cohesion: Attracts a robot its neighbours. As with separation, a cohesion be-
haviour is useful in the development of emergent global behaviours. The strength
of the stimulus should have an effect on the strength of the response so that robots
are less attracted to neighbours that are closer, reducing the chance of collisions.
The inputs to a cohesion behaviour’s network are similar to those of a separation
behaviour and come from the positions of their neighbours via a camera device.

Seek rubbish: Robots should be stimulated by the presence of a piece of rubbish,
which can be detected using a camera. Robots should be attracted to the location of
the rubbish with a strength of response that is relative to the how far away the rubbish
is, the further away, the stronger the attraction.

Seek power: Robots should be attracted to charging stations. Inputs are provided
in the same manner as the seek rubbish behaviour, using a camera device, and the
strength of the response is once again relative to the distance of the stimulus.

Seek bin : A seek bin behaviour is very similar to both the seek power and seek
rubbish behaviours, however in this case robots should be attracted to the bin. The
stimulus is the presence of the bin, and the strength of response is relative to the
distance between the robot and the bin.

3.1.3 Fixed-action-patterns

Fixed Action Patterns (FAP) are behaviours that continue even if the stimulus that
triggered them is not present, usually they run uninterrupted until completion. Their
response is always identical and so they are not suitable for control using neural
endocrine networks, like reflexes they can be implemented by directly tying stimulus
to response.

Pickup rubbish: A pickup rubbish behaviour should be stimulated when a robot
is close enough to a piece of rubbish and is not already carrying some. The behaviour
should involve the robot moving towards the piece of rubbish and either successfully
or unsuccessfully picking it up, both of which should result in the end of the pattern,
however if the pickup is unsuccessful it is possible that the behaviour will be re-
stimulated immediately.

Drop Rubbish: If a robot is carrying a piece of rubbish and is close enough to
the bin, the drop rubbish pattern should be stimulated. The pattern starts with the
robot approaching the bin and continues until the robot has either successfully or
unsuccessfully dropped the rubbish into the bin.
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Recharge: A recharge behaviour should be stimulated when a robot is close
enough to a charging station and its internal state dictates that it needs to recharge.
The behaviour should begin with the robot moving towards the charging station and
attempting to dock with it, if the robot fails to dock, the pattern should end, if the
robot successfully docks the pattern should continue until the robot is fully charged.

3.2 Neural-Endocrine Design

In section 2, it was noted that not every hormone in a system must affect every
neuron. In all previous work the approach has been to make all the neurons of a
single network sensitive to the same hormones, for example in a system with two
hormones ha and hb and two networks Na and Nb, a possible configuration would be
that all the neurons of Na are sensitive to ha and all the neurons of Nb are sensitive
to hb, this is shown in figure 1. The alternative is to make different neurons of the
same network sensitive to different hormones, for example in a system with two
hormones ha and hb and a single network of seven nodes {n1,n2, ...,n7}, nodes n1 –
n4 might be sensitive to ha and nodes n5 – n7 might be sensitive to hb, this is shown
in figure 2. Since each network in a system corresponds to a single behaviour, it
seems sensible that, as is the case in the previous approach, each network should be
affected by the same hormones. For simplicity, here each network is only associated
with a single gland-hormone pair. The sensitivity of a neuron i to a particular gland
g is denoted sig, in theory sig can take any value, however in this work sig only takes
the value 1 or 0, representing full or no sensitivity of i to g.

Fig. 1 Two networks, the neurons of which are all sensitive to the same hormone

Having decided that all neurons in a network will be sensitive to the same hor-
mones, that each network will only respond to one hormone and that sensitivity is
only ever 1 or 0 it is possible to refine equation 4 from section 2. Removing the sen-
sitivity and multiplicity of 4 leaves 5 where cg is the concentration of the network’s
only associated hormone. For simplicity, here each network is only associated with
a single gland-hormone pair.

u =
nx

∑
i=0

xi·wi·cg (5)
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Fig. 2 A single network with different neurons sensitive to different hormones

The activation of a gland can be calculated from a combination of both internal
and external properties of the system. Each gland is associated with a single acti-
vation parameter which changes over time according to a dedicated function and is
represented here as ag. The stimulation of a gland, as was seen in section 2 can be
calculated in one of two ways. Early implementations had shown success with using
a negative feedback mechanism, we therefore adopted that approach in this work.
The stimulation of a gland is calculated using 6, which is a slightly adjusted version
of 2 in order to take into account the new representation of activation.

Rg(t) =
αg ·ag(t)

1+ cg(t−1)
(6)

The final consideration with ANN-AES integration, is what values of stimula-
tion (αg) and decay (βg) rate are used by the networks. The stimulation rate helps
determine the amount of hormone released by a gland at a particular time-step and
the decay rate determines how long the hormone remains in the system, hence they
both have a big influence on the behavioural response. Values of αg and βg can
vary widely between different networks. These values were chosen experimentally,
however an automated learning process could be adopted.

3.2.1 Network size and Weights

ANNs can be defined by four properties: the number of hidden layers, the number
of nodes in each of the hidden layers, the number of nodes in the input layer and
the number of nodes in the output layer. For more information on neural networks,
the reader is directed to Haykin (1999). The number of nodes in the input layer
of a network are determined by the number of sensor values needed to define the
stimulus of that behaviour, for example in the case of obstacle avoidance which is
stimulated by the presence of nearby objects, the number of sonar devices (two in
this piece of work) determines the number of input nodes. The number of output
nodes is determined by the actuator that the response affects, in most cases, where
the response affects the locomotion of the robot, it is the number of inputs to the
motors that decides the number of output nodes (which again in this study is two).
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The number of hidden layers and the number of hidden layer nodes is less de-
pendent on the behaviour, and puts more pressure on the designer to choose sensible
values. It was known from our previous work that the networks required would be
relatively simple, consequently we only include one hidden layer.

With regards to setting the weights, we used a combination of determining the
weights by hand and back-propogation Haykin (1999).

3.2.2 Coordination of different behaviour types

Behaviours that are encapsulated as neural endocrine networks are coordinated by
summing their outputs. We have not discussed how these behaviours are coordinated
with the other types of behaviour, such as the fixed-action-patterns and reflexes. The
signal bin behaviour is a reflex, it does not affect anything other than the state of the
robot’s beacon and so it does not need to be coordinated with the other behaviours.
In terms of the FAPs, when stimulated, these will always take complete control
of the robot’s motors, inhibiting any of the suggested commands from the other
behaviours. It is very rare for conflicts to arise between different FAPs since it is
never the case that a robot will want to both drop and pickup rubbish at the same time
and because the bin and charging posts are positioned far apart (in the experiments
carried out in this work) there will never be a conflict between wanting to charge and
wanting to drop rubbish. However, we recognise that this is an avenue for further
exploration.

3.2.3 Environments

In order to test the adaptability of the system it was necessary to test the performance
of the robots in two different environments. Both of the environments were designed
with the capabilities of the robots in mind, for example, it was known that because
the robots had only two sonar sensors, both of which were located at the front,
they would struggle to find their way out of concave obstacles with small internal
angles. When faced with concave obstacles robots can be indecisive about which
way to turn and in the end may either end up stalling or crashing into the obstacle.
Another deficiency caused by the poor sonar coverage is that if an obstacle is too
small (smaller than the width of the robot) when a robot approaches it head on, its
sonar devices will not recognise it and the robot will crash. Due to these problems,
both of the environments were designed to contain no concave obstacles (with small
internal angles) and no obstacles smaller than the width of a robot.

The first environment, referred to as world 1, can be seen in figure 3, it contains
a single bin, shown by the large square; three charging stations, represented by the
circles; and twenty pieces of rubbish, depicted as very small squares, the robots are
the squares located by the bin. The world was made deliberately challenging by
placing the bin in the centre of the environment and surrounding it with obstacles.
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The reason for placing the bin in a difficult position, was the expectation that to
reach it, robots would fair better if they cooperated with each other, for example by
signalling and flocking. A second world was used, but space restricts the inclusion
of those results.

Fig. 3 Environment used for experiments

4 Experiments

All experiments were carried out in the Player/Stage environment Player (2009),
running on Linux. We simulated Pioneer mobile robots, containing sonars, a camera,
a gripper and a beacon. All code is available on request. The variant of foraging that
was chosen for this project is known as rubbish or garbage collection. The task of
rubbish collection used here involves a group of robots collecting pieces of rubbish
that are randomly distributed throughout the environment and returning them to a
bin. In order to make the task slightly more complex and to model the real world
closer robots are required to monitor their power levels and when they are running
low find a charging station at which to recharge.

4.1 Results for Neuro-endocrine Swarms

The success of the system is measured in terms of the amount of rubbish that was
collected. Graphs are presented to show how the success of the system changed as
the number of robots was varied. The total amount of rubbish collected by the group
as a whole, as well as the number of pieces collected per robot are analysed.
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4.2 Results

Figures 4(a) and 4(b) show the success of the robots after periods of 300 and 1200
seconds respectively. Each boxplot shows the results of ten different runs with ten
different starting positions for the rubbish. Both the graphs show a strong positive
correlation between the number of robots and the number of pieces of rubbish col-
lected, until the case where five robots were used, at which the performance starts
to level out and even drops in figure 4(b). The levelling out is expected in 4(b) since
the maximum number of pieces that can be collected is twenty, but the fact that it is
observed in 4(a) and that the performance drops in 4(b) indicates that interference
starts to have an effect after five robots. The case with five robots also had the small-
est interquartile range showing that five robots not only performed the best, but did
so consistently.

The first outlier in 4(b), where the number of robots was three and the number
of pieces picked up was six, was caused by one robot crashing, and the other robots
crashing into the obstruction formed by the other robots, which emphasises the im-
portance of redundancy in multi-robot systems. The outlier where the number of
robots was five and the number of pieces collected was sixteen can be attributed, at
least partly, to the simulator and the way the bin is represented. Since robots cannot
see the inside of the bin from the outside, there is always the danger that collisions
can occur as one robot travels into and one robot travels out of the bin, this is what
happened in case of this outlier, two robots crashed whilst entering and leaving the
bin which meant that when other robots came to drop rubbish there was a pileup
effect. Only one other crash at the bin was observed in the seventy experiments of
world 1, again for an experiment involving five robots however in this case it did
not involve all of the robots and two were able to continue functioning, resulting in
nineteen pieces being collected.
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Fig. 4 Graphs showing the number of pieces of rubbish collected over periods of 300 (a) and 1200
(b) seconds, with varying numbers of robots between one and seven: World 1
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Figure 5 shows the number of pieces of rubbish collected per robot after 300
and 1200 seconds, as to be expected, in both graphs the number of pieces drops
as more robots are added. What is interesting about figure 5(b) is that the smallest
interquartile range is observed for the case where there were five robots, showing
that a group of five robots is most consistent on an individual level as well as a group
level as indicated by figure 4(b). The outliers in figure 5(b) relate to the same runs
as in figure 4(b).
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Fig. 5 Graphs showing the number of pieces of rubbish collected per robot over periods of 300 (a)
and 1200 (b) seconds, with varying numbers of robots between one and seven: World 1

What is interesting to note from the observation of the experimental runs are the
emergence of certain types of behaviour: specifically flocking of robots and disper-
sion of robots. Flocking emerges from the combination of obstacle avoidance, seek
bin, signal bin, separation and cohesion and dispersion emerges from the combina-
tion of obstacle avoidance and separation, simply stated it is the spreading out of
robots over the environment to ensure the greatest amount of coverage. Robots re-
charge when necessary, and collaborate together, through flocking etc. to remove as
much garbage as possible from the environment. We have not undertaken a compari-
son between other approaches as yet, this would be outside the scope of a conference
paper. However, we have investigated the efficiency and the effect of speed up on
the swarm (how does adding more swarm members effect the overall performance),
but have not room to report those results here. In summary, however, we have been
able to show that there is an optimal number of robots for each world to achieve the
best performance in garbage collection.
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5 Conclusions

This work has adapted the neural-endocrine architecture for the development of
swarm robotic systems. An architecture has been proposed for the task of foraging
and has been showed to allow for good collection of garbage over two basic envi-
ronments. The work has also shown us that the simple neural-endocrine approach
can easily be used for the development of such swarm systems. We observe that
too many robots in the environment causes a potential problem (to be expected) for
the optimal collection of garbage. The work presented in this paper is also the most
complex task that the neural-endocrine approach has been used for to date. This
gives us confidence in our approach and further work will investigate the actual role
of each behaviour, and its importance to the overall performance of the system, and
developing neural-endocrine systems on an ocean-going platform.
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