76 research outputs found

    Novel aspects of renal tubulointerstitial fibrosis

    Get PDF
    Tubulointerstitial fibrosis is the key histological predictor of the progression of declining renal function and the final common pathway of progressive kidney disease, regardless of aetiology. Despite its significance, there are currently no treatments available to abrogate this process and those that suffer with this burden eventually succumb to renal failure. Tubulointerstitial fibrosis is largely mediated by fibroblasts and myofibroblasts present in the interstitium. In response to injury, activated fibroblasts differentiate into myofibroblasts which serves as a histological hallmark of fibrosis. Myofibroblasts are characterised as the key contributors to interstitial volume and their presence ultimately leads to loss of renal function. The pathological entities leading to fibrosis inextricably depend on complex signalling pathways. Whilst many of the well-known growth factors that exert effects on renal fibroblasts (such as FGF, EGF and PDGF) involve the activation of receptor tyrosine kinases, the intracellular signalling events dictating the response of fibroblasts remain undefined. The kinase mTOR, responsible for integrating stress and amino acids and controlling cell growth, is increasingly recognised for its ability to integrate growth factor signals mediated through the upstream serine/threonine kinase PI3K. A number of recent studies have highlighted the role of PI3K and mTOR in the regulation of key events relevant to fibrosis, serving as a basis for Chapter 3: The role of PI3K and mTOR in the regulation of fibroblast proliferation and collagen synthesis, and the first part of Chapter 5: The role of PI3K and mTOR in the regulation of myofibroblast differentiation. These studies have identified a key role for PI3K and mTOR in the regulation of fibroblast proliferation, differentiation and collagen synthesis. The work described within has also attempted to examine the derivation of myofibroblasts via EMT. EMT is a process that is integral to embryogenesis and may act as an important source of myofibroblasts during fibrosis. This process is examined in Chapter 4: Development and validation of an ex vivo model of EMT. This model aims to better represent the in vivo environment and has also been used to identify novel regulators involved in EMT being utilised in the second part of Chapter 5: The role of PI3K and mTOR in EMT. Although cytokines and growth factors are thought to be chiefly responsible for tubulointerstitial fibrosis, we now know that serine proteases of the coagulation cascade may also play roles in renal disease. However, unlike their role in glomerular diseases, the role of coagulation in tubulointerstitial fibrosis is less well-known. The work described in Chapter 6: Constituents of the coagulation cascade are spatially and functionally related to experimental tubulointerstitial fibrosis has examined temporal and spatial in vivo relationships of coagulation factors and markers of fibrosis that aid our understanding of mechanisms of fibrosis. The aim of this thesis was to examine those facets of renal fibroblast function that are most devastating to renal function and culminate in an expansion of the renal interstitium during fibrosis. This work hopes to provide useful information to aid the understanding of the multifaceted mechanisms involved in renal tubulointerstitial fibrosis

    miR-200a Prevents Renal Fibrogenesis Through Repression of TGF-β2 Expression

    Get PDF
    OBJECTIVE: Progressive fibrosis in the diabetic kidney is driven and sustained by a diverse range of profibrotic factors. This study examines the critical role of microRNAs (miRNAs) in the regulation of the key fibrotic mediators, TGF-β1 and TGF-β2. RESEARCH DESIGN AND METHODS: Rat proximal-tubular epithelial cells (NRK52E) were treated with TGF-β1 and TGF-β2 for 3 days, and expression of markers of epithelial-to-mesenchymal transition (EMT) and fibrogenesis were assessed by RT-PCR and Western blotting. The expression of miR-141 and miR-200a was also assessed, as was their role as translational repressors of TGF-β signaling. Finally, these pathways were explored in two different mouse models, representing early and advanced diabetic nephropathy. RESULTS: Both TGF-β1 and TGF-β2 induced EMT and fibrogenesis in NRK52E cells. TGF-β1 and TGF-β2 also downregulated expression of miR-200a. The importance of these changes was demonstrated by the finding that ectopic expression miR-200a downregulated smad-3 activity and the expression of matrix proteins and prevented TGF-β-dependent EMT. miR-200a also downregulated the expression of TGF-β2, via direct interaction with the 3' untranslated region of TGF-β2. The renal expression of miR-141 and miR-200a was also reduced in mouse models representing early and advanced kidney disease. CONCLUSIONS: miR-200a and miR-141 significantly impact on the development and progression of TGF-β-dependent EMT and fibrosis in vitro and in vivo. These miRNAs appear to be intricately involved in fibrogenesis, both as downstream mediators of TGF-β signaling and as components of feedback regulation, and as such represent important new targets for the prevention of progressive kidney disease in the context of diabetes

    The bone morphogenetic protein axis is a positive regulator of skeletal muscle mass

    Get PDF
    Although the canonical transforming growth factor β signaling pathway represses skeletal muscle growth and promotes muscle wasting, a role in muscle for the parallel bone morphogenetic protein (BMP) signaling pathway has not been defined. We report, for the first time, that the BMP pathway is a positive regulator of muscle mass. Increasing the expression of BMP7 or the activity of BMP receptors in muscles induced hypertrophy that was dependent on Smad1/5-mediated activation of mTOR signaling. In agreement, we observed that BMP signaling is augmented in models of muscle growth. Importantly, stimulation of BMP signaling is essential for conservation of muscle mass after disruption of the neuromuscular junction. Inhibiting the phosphorylation of Smad1/5 exacerbated denervation-induced muscle atrophy via an HDAC4-myogenin–dependent process, whereas increased BMP–Smad1/5 activity protected muscles from denervation-induced wasting. Our studies highlight a novel role for the BMP signaling pathway in promoting muscle growth and inhibiting muscle wasting, which may have significant implications for the development of therapeutics for neuromuscular disorders

    Inhibition of miR-29 by TGF-beta-Smad3 Signaling through Dual Mechanisms Promotes Transdifferentiation of Mouse Myoblasts into Myofibroblasts

    Get PDF
    MicroRNAs (miRNAs) are non-coding RNAs that regulate gene expression in post-transcriptional fashion, and emerging studies support their importance in regulating many biological processes, including myogenic differentiation and muscle development. miR-29 is a promoting factor during myogenesis but its full spectrum of impact on muscle cells has yet to be explored. Here we describe an analysis of miR-29 affected transcriptome in C2C12 muscle cells using a high throughput RNA-sequencing platform. The results reveal that miR-29 not only functions to promote myogenic differentiation but also suppresses the transdifferentiation of myoblasts into myofibroblasts. miR-29 inhibits the fibrogenic differentiation through down-regulating both extracellular matrix genes and cell adhesion genes. We further demonstrate that miR-29 is under negative regulation by TGF-beta (TGF-β)–Smad3 signaling via dual mechanisms of both inhibiting MyoD binding and enhancing Yin Yang 1 (YY1)-recruited Polycomb association. Together, these results identify miR-29 as a pleiotropic molecule in both myogenic and fibrogenic differentiation of muscle cells

    Transduction of Skeletal Muscles with Common Reporter Genes Can Promote Muscle Fiber Degeneration and Inflammation

    Get PDF
    Recombinant adeno-associated viral vectors (rAAV vectors) are promising tools for delivering transgenes to skeletal muscle, in order to study the mechanisms that control the muscle phenotype, and to ameliorate diseases that perturb muscle homeostasis. Many studies have employed rAAV vectors carrying reporter genes encoding for β-galactosidase (β-gal), human placental alkaline phosphatase (hPLAP), and green fluorescent protein (GFP) as experimental controls when studying the effects of manipulating other genes. However, it is not clear to what extent these reporter genes can influence signaling and gene expression signatures in skeletal muscle, which may confound the interpretation of results obtained in experimentally manipulated muscles. Herein, we report a strong pro-inflammatory effect of expressing reporter genes in skeletal muscle. Specifically, we show that the administration of rAAV6:hPLAP vectors to the hind limb muscles of mice is associated with dose- and time-dependent macrophage recruitment, and skeletal muscle damage. Dose-dependent expression of hPLAP also led to marked activity of established pro-inflammatory IL-6/Stat3, TNFα, IKKβ and JNK signaling in lysates obtained from homogenized muscles. These effects were independent of promoter type, as expression cassettes featuring hPLAP under the control of constitutive CMV and muscle-specific CK6 promoters both drove cellular responses when matched for vector dose. Importantly, the administration of rAAV6:GFP vectors did not induce muscle damage or inflammation except at the highest doses we examined, and administration of a transgene-null vector (rAAV6:MCS) did not cause damage or inflammation at any of the doses tested, demonstrating that GFP-expressing, or transgene-null vectors may be more suitable as experimental controls. The studies highlight the importance of considering the potential effects of reporter genes when designing experiments that examine gene manipulation in vivo

    miR-206 Represses Hypertrophy of Myogenic Cells but Not Muscle Fibers via Inhibition of HDAC4

    Get PDF
    microRNAs regulate the development of myogenic progenitors, and the formation of skeletal muscle fibers. However, the role miRNAs play in controlling the growth and adaptation of post-mitotic musculature is less clear. Here, we show that inhibition of the established pro-myogenic regulator miR-206 can promote hypertrophy and increased protein synthesis in post-mitotic cells of the myogenic lineage. We have previously demonstrated that histone deacetylase 4 (HDAC4) is a target of miR-206 in the regulation of myogenic differentiation. We confirmed that inhibition of miR-206 de-repressed HDAC4 accumulation in cultured myotubes. Importantly, inhibition of HDAC4 activity by valproic acid or sodium butyrate prevented hypertrophy of myogenic cells otherwise induced by inhibition of miR-206. To test the significance of miRNA-206 as a regulator of skeletal muscle mass in vivo, we designed recombinant adeno-associated viral vectors (rAAV6 vectors) expressing miR-206, or a miR-206 "sponge," featuring repeats of a validated miR-206 target sequence. We observed that over-expression or inhibition of miR-206 in the muscles of mice decreased or increased endogenous HDAC4 levels respectively, but did not alter muscle mass or myofiber size. We subsequently manipulated miR-206 levels in muscles undergoing follistatin-induced hypertrophy or denervation-induced atrophy (models of muscle adaptation where endogenous miR-206 expression is altered). Vector-mediated manipulation of miR-206 activity in these models of cell growth and wasting did not alter gain or loss of muscle mass respectively. Our data demonstrate that although the miR-206/HDAC4 axis operates in skeletal muscle, the post-natal expression of miR-206 is not a key regulator of basal skeletal muscle mass or specific modes of muscle growth and wasting. These studies support a context-dependent role of miR-206 in regulating hypertrophy that may be dispensable for maintaining or modifying the adult skeletal muscle phenotype--an important consideration in relation to the development of therapeutics designed to manipulate microRNA activity in musculature

    Role of the phosphatidylinositol 3-kinase and mTOR pathways in the regulation of renal fibroblast function and differentiation

    No full text
    Tubulointerstitial fibrosis is largely mediated by (myo)fibroblasts present in the interstitium. In this study, we investigated the role of mTOR and phosphatidylinositol 3-kinase in the regulation of fibroblast kinetics, fibroblast differentiation, and collagen synthesis. Rat renal fibroblasts were propagated from kidneys 3 days post-ureteric obstruction and specific inhibitors of mTOR (RAD) and phosphatidylinositol 3-kinase (LY294002) were used to examine the regulation of fibrogenesis. LY294002 but not RAD completely inhibited phosphorylation of Akt, while both inhibitors decreased phosphorylation of the S6 ribosomal protein. RAD and LY decreased foetal calf serum stimulated proliferation and DNA synthesis. In addition to their individual effects, treatment with both RAD and LY294002 decreased serum-induced fibroblast proliferation and DNA synthesis significantly more than either drug alone. TUNEL positive cells (apoptosis) in RAD and LY294002 treated groups were not different from control groups. In addition to their effect on proliferation, both inhibitors also reduced total collagen synthesis. Differentiation studies indicated an increase in a-smooth muscle actin expression relative to beta-actin (western blotting), with cytochemistry confirming that all doses of RAD and LY294002 increased the proportion of alpha-smooth muscle actin positive cells, and hence myofibroblasts. Effects were independent of cell toxicity. These results highlight the potential significance of PI3K and mTOR, in the regulation of renal (myo)fibroblast activity. The synergistic effects of LY and RAD on proliferation suggest that mTOR signalling involves pathways other than phosphatidylinositol 3-kinase. These results provide a novel insight into the mechanisms of fibroblast regulation during fibrogenesis

    Old Drug, New Trick: Tilorone, a Broad-Spectrum Antiviral Drug as a Potential Anti-Fibrotic Therapeutic for the Diseased Heart

    Get PDF
    Cardiac fibrosis is associated with most forms of cardiovascular disease. No reliable therapies targeting cardiac fibrosis are available, thus identifying novel drugs that can resolve or prevent fibrosis is needed. Tilorone, an antiviral agent, can prevent fibrosis in a mouse model of lung disease. We investigated the anti-fibrotic effects of tilorone in human cardiac fibroblasts in vitro by performing a radioisotopic assay for [3H]-proline incorporation as a proxy for collagen synthesis. Exploratory studies in human cardiac fibroblasts treated with tilorone (10 µM) showed a significant reduction in transforming growth factor-β induced collagen synthesis compared to untreated fibroblasts. To determine if this finding could be recapitulated in vivo, mice with established pathological remodelling due to four weeks of transverse aortic constriction (TAC) were administered tilorone (50 mg/kg, i.p) or saline every third day for eight weeks. Treatment with tilorone was associated with attenuation of fibrosis (assessed by Masson’s trichrome stain), a favourable cardiac gene expression profile and no further deterioration of cardiac systolic function determined by echocardiography compared to saline treated TAC mice. These data demonstrate that tilorone has anti-fibrotic actions in human cardiac fibroblasts and the adult mouse heart, and represents a potential novel therapy to treat fibrosis associated with heart failure
    corecore