465 research outputs found
Operation of a 1-Liter-Volume Gaseous Argon Scintillation Counter
We have built a gas-phase argon ionization detector to measure small nuclear
recoil energies (< 10 keVee). In this paper, we describe the detector response
to X-ray and gamma calibration sources, including analysis of pulse shapes,
software triggers, optimization of gas content, and energy- and
position-dependence of the signal. We compare our experimental results against
simulation using a 5.9-keV X-ray source, as well as higher-energy gamma sources
up to 1332 keV. We conclude with a description of the detector, DAQ, and
software settings optimized for a measurement of the low-energy nuclear
quenching factor in gaseous argon. This work was performed under the auspices
of the U.S. Department of Energy by Lawrence Livermore National Laboratory in
part under Contract W-7405-Eng-48 and in part under Contract DE-AC52-07NA27344.
Funded by Lab-wide LDRD. LLNL-JRNL-415990-DRAFT.Comment: 29 pages, single-column, double-spaced, 21 figure
A Comparison of Learning and Costs of Continuing Education Programming Via Traditional Versus Telephone Delivery in The State of North Dakota
How a turn to critical race theory can contribute to our understanding of 'race', racism and anti-racism in sport
As long as racism has been associated with sport there have been consistent, if not coordinated or coherent, struggles to confront its various forms. Critical race theory (CRT) is a framework established to challenge these racialized inequalities and racism in society and has some utility for anti-racism in sport. CRT's focus on social justice and transformation are two areas of convergence between critical race theorists and anti-racists. Of the many nuanced and pernicious forms of racism, one of the most obvious and commonly reported forms of racism in sport, racial abuse, has been described as a kind of dehumanizing process by Gardiner (2003), as those who are its target are simultaneously (re)constructed and objectified according to everyday myth and fantasy. However, this is one of the many forms of everyday racist experiences. Various forms of racism can be experienced in boardrooms, on television, in print, in the stands, on the sidelines and on the pitch. Many times racism is trivialized and put down as part of the game (Long et al., 2000), yet its impact is rarely the source of further exploration. This article will explore the conceptualization of 'race' and racism for a more effective anti-racism. Critical race theory will also be used to explore the ideas that underpin considerations of the severity of racist behaviour and the implications for anti-racism. © The Author(s) 2010
A search for light dark matter in XENON10 data
We report results of a search for light (<10 GeV) particle dark matter with
the XENON10 detector. The event trigger was sensitive to a single electron,
with the analysis threshold of 5 electrons corresponding to 1.4 keV nuclear
recoil energy. Considering spin-independent dark matter-nucleon scattering, we
exclude cross sections \sigma_n>3.5x10^{-42} cm^2, for a dark matter particle
mass m_{\chi}=8 GeV. We find that our data strongly constrain recent elastic
dark matter interpretations of excess low-energy events observed by CoGeNT and
CRESST-II, as well as the DAMA annual modulation signal.Comment: Manuscript identical to v2 (published version) but also contains
erratum. Note v3==v2 but without \linenumber
Constraints on inelastic dark matter from XENON10
It has been suggested that dark matter particles which scatter inelastically
from detector target nuclei could explain the apparent incompatibility of the
DAMA modulation signal (interpreted as evidence for particle dark matter) with
the null results from CDMS-II and XENON10. Among the predictions of
inelastically interacting dark matter are a suppression of low-energy events,
and a population of nuclear recoil events at higher nuclear recoil equivalent
energies. This is in stark contrast to the well-known expectation of a falling
exponential spectrum for the case of elastic interactions. We present a new
analysis of XENON10 dark matter search data extending to E keV
nuclear recoil equivalent energy. Our results exclude a significant region of
previously allowed parameter space in the model of inelastically interacting
dark matter. In particular, it is found that dark matter particle masses
GeV are disfavored.Comment: 8 pages, 4 figure
3D Position Sensitive XeTPC for Dark Matter Search
The technique to realize 3D position sensitivity in a two-phase xenon time
projection chamber (XeTPC) for dark matter search is described. Results from a
prototype detector (XENON3) are presented.Comment: Presented at the 7th UCLA Symposium on "Sources and Detection of Dark
Matter and Dark Energy in the Universe
CODE-1 : moored array and large-scale data report
The Coastal Ocean Dynamics Experiment
(CODE) was undertaken to identify and study
the important dynamical processes which
govern the wind-driven motion of coastal
water over the continental shelf. The
initial effort in this multi-year, multi-institutional
research program was to obtain
high-quality data sets of all the
relevant physical variables needed to construct
accurate kinematic and dynamic descriptions
of the response of shelf water
to strong wind forcing in the 2 to 10 day
band. A series of two small-scale, densely-instrumented
field experiments of approximately
four months duration (called CODE-1
and CODE-2) were designed to explore and
to determine the kinematics and momentum
and heat balances of the local wind-driven
flow over a region of the northern California shelf which is characterized by both
relatively simple bottom topography and
large wind stress events in both winter
and summer. A more lightly instrumented,
long-term, large-scale component was designed
to help separate the local wind-driven
response in the region of the small-scale
experiments from motions generated either offshore by the California Current
system or in some distant region along the
coast, and also to help determine the seasonal
cycles of the atmospheric forcing,
water structure, and coastal currents over
the northern California shelf.
The first small-scale experiment
(CODE-1) was conducted between April and
August, 1981 as a pilot study in which
primary emphasis was placed on characterizing
the wind-driven "signal" and the
"noise" from which this signal must be
extracted. In particular, CODE-1 was
designed to identify the key features of
the circulation and its variability over
the northern California shelf and to
determine the important time and length
scales of the wind-driven response. This
report presents a basic description of the
moored array data and some other Eulerian
data collected during CODE-1. A brief
description of the CODE-1 field program is
presented first, followed by a description
of the common data analysis procedures used
to produce the various data sets presented
here. Then basic descriptions of the following
data sets are presented: (a) the
coastal and moored meteorological measurements,
(b) the moored current measurements,
(c) the moored temperature and conductivity
observations, (d) the bottom pressure measurements,
and (e) the wind and adjusted
coastal sea level observations obtained as
part of the CODE-1 large-scale component.Prepared for the National Science
Foundation under Grant OCE 80-14941
The Quintessential CMB, Past & Future
The past, present and future of cosmic microwave background (CMB) anisotropy
research is discussed, with emphasis on the Boomerang and Maxima balloon
experiments. These data are combined with large scale structure (LSS)
information and high redshift supernova (SN1) observations to explore the
inflation-based cosmic structure formation paradigm. Here we primarily focus on
a simplified inflation parameter set, {omega_b,omega_{cdm},Omega_{tot},
Omega_Q,w_Q, n_s,tau_C, sigma_8}. After marginalizing over the other cosmic and
experimental variables, we find the current CMB+LSS+SN1 data gives
Omega_{tot}=1.04\pm 0.05, consistent with (non-baroque) inflation theory.
Restricting to Omega_{tot}=1, we find a nearly scale invariant spectrum, n_s
=1.03 \pm 0.07. The CDM density, omega_{cdm}=0.17\pm 0.02, is in the expected
range, but the baryon density, omega_b=0.030\pm 0.004, is slightly larger than
the current nucleosynthesis estimate. Substantial dark energy is inferred,
Omega_Q\approx 0.68\pm 0.05, and CMB+LSS Omega_Q values are compatible with the
independent SN1 estimates. The dark energy equation of state, parameterized by
a quintessence-field pressure-to-density ratio w_Q, is not well determined by
CMB+LSS (w_Q<-0.3 at 95%CL), but when combined with SN1 the resulting w_Q<-0.7
limit is quite consistent with the w_Q=-1 cosmological constant case. Though
forecasts of statistical errors on parameters for current and future
experiments are rosy, rooting out systematic errors will define the true
progress.Comment: 14 pages, 3 figs., in Proc. CAPP-2000 (AIP), CITA-2000-6
MAXIPOL: Cosmic Microwave Background Polarimetry Using a Rotating Half-Wave Plate
We discuss MAXIPOL, a bolometric balloon-borne experiment designed to measure
the E-mode polarization of the cosmic microwave background radiation (CMB).
MAXIPOL is the first bolometric CMB experiment to observe the sky using rapid
polarization modulation. To build MAXIPOL, the CMB temperature anisotropy
experiment MAXIMA was retrofitted with a rotating half-wave plate and a
stationary analyzer. We describe the instrument, the observations, the
calibration and the reduction of data collected with twelve polarimeters
operating at 140 GHz and with a FWHM beam size of 10 arcmin. We present maps of
the Q and U Stokes parameters of an 8 deg^2 region of the sky near the star
Beta Ursae Minoris. The power spectra computed from these maps give weak
evidence for an EE signal. The maximum-likelihood amplitude of
l(l+1)C^{EE}_{l}/(2 pi) is 55_{-45}^{+51} uK^2 (68%), and the likelihood
function is asymmetric and skewed positive such that with a uniform prior the
probability that the amplitude is positive is 96%. This result is consistent
with the expected concordance LCDM amplitude of 14 uK^2. The maximum likelihood
amplitudes for l(l+1)C^{BB}_{l}/(2 pi) and are
-31_{-19}^{+31} and 18_{-34}^{+27} uK^2 (68%), respectively, which are
consistent with zero. All of the results are for one bin in the range 151 < l <
693. Tests revealed no residual systematic errors in the time or map domain. A
comprehensive discussion of the analysis of the data is presented in a
companion paper.Comment: 19 pages, 11 figures, 2 tables, submitted to Ap
- …
