110 research outputs found

    Negative-Energy Perturbations in Circularly Cylindrical Equilibria within the Framework of Maxwell-Drift Kinetic Theory

    Full text link
    The conditions for the existence of negative-energy perturbations (which could be nonlinearly unstable and cause anomalous transport) are investigated in the framework of linearized collisionless Maxwell-drift kinetic theory for the case of equilibria of magnetically confined, circularly cylindrical plasmas and vanishing initial field perturbations. For wave vectors with a non-vanishing component parallel to the magnetic field, the plane equilibrium conditions (derived by Throumoulopoulos and Pfirsch [Phys Rev. E {\bf 49}, 3290 (1994)]) are shown to remain valid, while the condition for perpendicular perturbations (which are found to be the most important modes) is modified. Consequently, besides the tokamak equilibrium regime in which the existence of negative-energy perturbations is related to the threshold value of 2/3 of the quantity ην=lnTνlnNν\eta_\nu = \frac {\partial \ln T_\nu} {\partial \ln N_\nu}, a new regime appears, not present in plane equilibria, in which negative-energy perturbations exist for {\em any} value of ην\eta_\nu. For various analytic cold-ion tokamak equilibria a substantial fraction of thermal electrons are associated with negative-energy perturbations (active particles). In particular, for linearly stable equilibria of a paramagnetic plasma with flat electron temperature profile (ηe=0\eta_e=0), the entire velocity space is occupied by active electrons. The part of the velocity space occupied by active particles increases from the center to the plasma edge and is larger in a paramagnetic plasma than in a diamagnetic plasma with the same pressure profile. It is also shown that, unlike in plane equilibria, negative-energy perturbations exist in force-free reversed-field pinch equilibria with a substantial fraction of active particles.Comment: 31 pages, late

    Negative-energy perturbations in cylindrical equilibria with a radial electric field

    Get PDF
    The impact of an equilibrium radial electric field EE on negative-energy perturbations (NEPs) (which are potentially dangerous because they can lead to either linear or nonlinear explosive instabilities) in cylindrical equilibria of magnetically confined plasmas is investigated within the framework of Maxwell-drift kinetic theory. It turns out that for wave vectors with a non-vanishing component parallel to the magnetic field the conditions for the existence of NEPs in equilibria with E=0 [G. N. Throumoulopoulos and D. Pfirsch, Phys. Rev. E 53, 2767 (1996)] remain valid, while the condition for the existence of perpendicular NEPs, which are found to be the most important perturbations, is modified. For eiϕTi|e_i\phi|\approx T_i (ϕ\phi is the electrostatic potential) and Ti/Te>βcP/(B2/8π)T_i/T_e > \beta_c\approx P/(B^2/8\pi) (PP is the total plasma pressure), a case which is of operational interest in magnetic confinement systems, the existence of perpendicular NEPs depends on eνEe_\nu E, where eνe_\nu is the charge of the particle species ν\nu. In this case the electric field can reduce the NEPs activity in the edge region of tokamaklike and stellaratorlike equilibria with identical parabolic pressure profiles, the reduction of electron NEPs being more pronounced than that of ion NEPs.Comment: 30 pages, late

    Model-Based Security Testing

    Full text link
    Security testing aims at validating software system requirements related to security properties like confidentiality, integrity, authentication, authorization, availability, and non-repudiation. Although security testing techniques are available for many years, there has been little approaches that allow for specification of test cases at a higher level of abstraction, for enabling guidance on test identification and specification as well as for automated test generation. Model-based security testing (MBST) is a relatively new field and especially dedicated to the systematic and efficient specification and documentation of security test objectives, security test cases and test suites, as well as to their automated or semi-automated generation. In particular, the combination of security modelling and test generation approaches is still a challenge in research and of high interest for industrial applications. MBST includes e.g. security functional testing, model-based fuzzing, risk- and threat-oriented testing, and the usage of security test patterns. This paper provides a survey on MBST techniques and the related models as well as samples of new methods and tools that are under development in the European ITEA2-project DIAMONDS.Comment: In Proceedings MBT 2012, arXiv:1202.582

    Chromosomal instability and lack of cyclin E regulation in hCdc4 mutant human breast cancer cells

    Get PDF
    INTRODUCTION: Cyclin E, a G(1 )cyclin essential for G(1)–S phase transition, is known to have a profound effect on tumorigenesis. Elevated levels of cyclin E have been associated with breast cancer, and chromosomal instability observed in breast cancer is suggested to be associated with constitutive expression of cyclin E. It was previously demonstrated that SUM149PT human breast cancer cells show very high levels of cyclin E expression by western analysis and that they express a nonfunctional cyclin E ubiquitin ligase due to a mutation in the F-box protein hCdc4. METHODS: We examined cyclin E expression in both MCF10A and SUM149PT cells using western blot analysis and flow cytometry. Immunofluorescence was utilized for the localization of cyclin E in both normal and breast cancer cells. In addition, array comparative genomic hybridization analysis was performed to compare chromosome copy number alterations with levels of cyclin E expression among a panel of breast cancer cell lines. RESULTS: SUM149PT cells overexpress cyclin E on a cell per cell basis for the duration of the cell cycle. High cyclin E levels are maintained throughout the S phase, and SUM149PT cells exhibit an S phase delay or arrest probably due to cyclin E overexpression. In addition, comparative genomic hybridization indicated that SUM149PT cells exhibit many chromosome copy number alterations, which may reflect prior or ongoing genomic instability. However, no direct correlation was observed between cyclin E levels and genomic copy number alteration in a panel of human breast cancer cell lines. CONCLUSIONS: Cyclin E is overexpressed at high levels throughout the cell cycle in SUM149PT cells, which is in stark contrast to cyclin E degradation observed in the mid to late S phase of normal cells. SUM149PT cells are unable to regulate cyclin E and also exhibit many copy number alterations. However, there was a lack of direct correlation between cyclin E overexpression and chromosomal instability across a panel of other breast cancer cell lines examined

    Fluorescence activated cell sorting followed by small RNA sequencing reveals stable microRNA expression during cell cycle progression.

    Get PDF
    BACKGROUND: Previously, drug-based synchronization procedures were used for characterizing the cell cycle dependent transcriptional program. However, these synchronization methods result in growth imbalance and alteration of the cell cycle machinery. DNA content-based fluorescence activated cell sorting (FACS) is able to sort the different cell cycle phases without perturbing the cell cycle. MiRNAs are key transcriptional regulators of the cell cycle, however, their expression dynamics during cell cycle has not been explored. METHODS: Following an optimized FACS, a complex initiative of high throughput platforms (microarray, Taqman Low Density Array, small RNA sequencing) were performed to study gene and miRNA expression profiles of cell cycle sorted human cells originating from different tissues. Validation of high throughput data was performed using quantitative real time PCR. Protein expression was detected by Western blot. Complex statistics and pathway analysis were also applied. RESULTS: Beyond confirming the previously described cell cycle transcriptional program, cell cycle dependently expressed genes showed a higher expression independently from the cell cycle phase and a lower amplitude of dynamic changes in cancer cells as compared to untransformed fibroblasts. Contrary to mRNA changes, miRNA expression was stable throughout the cell cycle. CONCLUSIONS: Cell cycle sorting is a synchronization-free method for the proper analysis of cell cycle dynamics. Altered dynamic expression of universal cell cycle genes in cancer cells reflects the transformed cell cycle machinery. Stable miRNA expression during cell cycle progression may suggest that dynamical miRNA-dependent regulation may be of less importance in short term regulations during the cell cycle

    Testing robots using CSP

    Get PDF
    This paper presents a technique for automatic generation of tests for robotic systems based on a domain-specific notation called RoboChart. This is a UML-like diagrammatic notation that embeds a component model suitable for robotic systems, and supports the definition of behavioural models using enriched state machines that can feature time properties. The formal semantics of RoboChart is given using tockCSP, a discrete-time variant of the process algebra CSP. In this paper, we use the example of a simple drone to illustrate an approach to generate tests from RoboChart models using a mutation tool called Wodel. From mutated models, tests are generated using the CSP model checker FDR. The testing theory of CSP justifies the soundness of the tests

    Critical times for overcritical relativistic electron beams injected into plasmas

    Get PDF
    corecore