67 research outputs found

    Mechanisms and modulation of neuropathic pain by neurotrophin-3

    Get PDF
    Neuropathic pain is a complex clinical syndrome characterized by increased sensitivity to thermal and/or mechanical stimuli that may or may not be accompanied by the phenomenon of spontaneous or aberrant pain sensations. Over the past decade, the mechanisms underlying the behavioral manifestations of inflammatory neuropathic pain have become more clearly elucidated. These include the involvement of: 1) transient receptor potential vanilloid receptor 1 (TRPV1) in the generation of thermal hyperalgesia; 2) acid sensing ion channel 3 (ASIC3) in some aspects of the development/maintenance of mechanical hypersensitivity; 3) the tetrodotoxin resistant sodium channels Nav1.8 and Nav1.9 in both hyperalgesia and spontaneous pain; and 4) activation of the MAP Kinases p38 and ERK1/2 in the regulation of expression of the aforementioned molecules.Interestingly, it is the pro-inflammatory neurotrophin nerve growth factor (NGF) that is the common link between all of these mediators of neuropathic pain. Increased availability of NGF under conditions of inflammation has been shown to drive increased expression/upregulation of TRPV1, ASIC3, Nav1.8 and Nav1.9, as well as phospho-p38 and phospho-ERK1/2.Evidence presented here continues to support a role for neurotrophin-3 (NT-3) in antagonizing the effects of increased NGF on trkA signaling, neuropathic pain behaviors and some of the molecules associated with the generation of such behaviors.More specifically, the work culminating in this thesis demonstrates a novel role for NT-3 in negative modulation of TRPV1, ASIC3, Nav1.8 and Nav1.9, as well as phospho-p38 expression in response to the chronic constriction injury model of neuropathic pain. Finally, initial insights into how this negative regulation of these nociceptive markers might occur is elucidated in studies demonstrating that NT-3 differentially affects levels of the key signaling molecule phospho-ERK in trkA-positive versus trkC-positive neurons in naïve dorsal root ganglia (DRG)

    Managing Lawns to Protect Water Quality: Watering, Fertilizing, and Applying Pesticides

    Get PDF
    Maintaining a quality lawn requires that you use intensive lawn care practices like watering, fertilizing, and/or applying pesticides. A number of best management practices (BMPs) provide safe-guards for preventing the contamination of surface water and groundwater supplies with lawn fertilizer and/or pesticides

    Vector‐mediated release of GABA attenuates pain‐related behaviors and reduces Na V 1.7 in DRG neurons

    Full text link
    Pain is a common and debilitating accompaniment of neuropathy that occurs as a complication of diabetes. In the current study, we examined the effect of continuous release of gamma amino butyric acid (GABA), achieved by gene transfer of glutamic acid decarboxylase (GAD67) to dorsal root ganglia (DRG) in vivo using a non‐replicating herpes simplex virus (HSV)‐based vector (vG) in a rat model of painful diabetic neuropathy (PDN). Subcutaneous inoculation of vG reduced mechanical hyperalgesia, thermal hyperalgesia and cold allodynia in rats with PDN. Continuous release of GABA from vector transduced cells in vivo prevented the increase in the voltage‐gated sodium channel isoform 1.7 (Na V 1.7) protein that is characteristic of PDN. In vitro , infection of primary DRG neurons with vG prevented the increase in Na V 1.7 resulting from exposure to hyperglycemia. The effect of vector‐mediated GABA on Na V 1.7 levels in vitro was blocked by phaclofen but not by bicuculline, a GABA B receptor effect that was blocked by pertussis toxin‐(PTX) interference with Gα( i/o ) function. Taken in conjunction with our previous observation that continuous activation of delta opioid receptors by vector‐mediated release of enkephalin also prevents the increase in Na V 1.7 in DRG exposed to hyperglycemia in vitro or in vivo , the observations in this report suggest a novel common mechanism through which activation of G protein coupled receptors (GPCR) in DRG neurons regulate the phenotype of the primary afferent.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/90401/1/j.ejpain.2011.03.007.pd

    Implementation of the laboratory quality management system (ISO 15189): Experience from Bugando Medical Centre Clinical Laboratory – Mwanza, Tanzania

    Get PDF
    Background: Use of laboratory evidence-based patient health care in Tanzania remains a complex problem, as with many other countries in sub-Saharan Africa. As at 2010, 39 African countries, including Tanzania, had no clinical laboratories that met the minimum requirements for international laboratory standards (International Organization for Standardization [ISO] 15189).   Objective: The aim of this article is to share experience from Bugando Medical Centre laboratory’s milestones in reaching ISO 15189 accreditation.   Methods: Mentors to address the laboratory management and technical requirements performed a gap analysis using the Southern African Development Community Accreditation system checklist. Several non-conformances were detected. System and technical procedures were developed, approved and communicated. Quality indicators were established to measure laboratory improvement and to identify issues which require immediate and preventive actions.   Results: The departments’ external quality assessment performance increased after ISO 15189 implementation (e.g. Parasitology from 45% to 100%, Molecular Biology from no records to 100%, Biochemistry 50% to 95%, Tuberculosis Microscopy 60% to 100%, and Microbiology from 48.1% to 100%). There was a reduction in complaints, from eight to two per week. Rejected samples were reduced from 7.2% to 1.2%. Turn-around time was not recorded before implementation but reached 92% (1644/1786) of the defined targets, and the proportion of contamination in blood cultures decreased from 16% to 4%.   Conclusion: Our experience suggests that the implementation of a quality management system is possible in resource-limited countries like Tanzania. Mentorship is necessary and should be done by professional laboratory mentors trained in quality management systems. Financial resources and motivated staff are key to achieving ISO 15189 accreditation

    Effects of Exogenous Galanin on Neuropathic Pain State and Change of Galanin and Its Receptors in DRG and SDH after Sciatic Nerve-Pinch Injury in Rat

    Get PDF
    A large number of neuroanatomical, neurophysiologic, and neurochemical mechanisms are thought to contribute to the development and maintenance of neuropathic pain. However, mechanisms responsible for neuropathic pain have not been completely delineated. It has been demonstrated that neuropeptide galanin (Gal) is upregulated after injury in the dorsal root ganglion (DRG) and spinal dorsal horn (SDH) where it plays a predominantly antinociceptive role. In the present study, sciatic nerve-pinch injury rat model was used to determine the effects of exogenous Gal on the expression of the Gal and its receptors (GalR1, GalR2) in DRG and SDH, the alterations of pain behavior, nerve conduction velocity (NCV) and morphology of sciatic nerve. The results showed that exogenous Gal had antinociceptive effects in this nerve-pinch injury induced neuropathic pain animal model. It is very interesting that Gal, GalR1 and GalR2 change their expression greatly in DRG and SDH after nerve injury and intrathecal injection of exougenous Gal. Morphological investigation displays a serious damage after nerve-pinch injury and an amendatory regeneration after exogenous Gal treatment. These findings imply that Gal, via activation of GalR1 and/or GalR2, may have neuroprotective effects in reducing neuropathic pain behaviors and improving nerve regeneration after nerve injury

    Transcriptomics Analysis of Porcine Caudal Dorsal Root Ganglia in Tail Amputated Pigs Shows Long-Term Effects on Many Pain-Associated Genes

    Get PDF
    Tail amputation by tail docking or as an extreme consequence of tail biting in commercial pig production potentially has serious implications for animal welfare. Tail amputation causes peripheral nerve injury that might be associated with lasting chronic pain. The aim of this study was to investigate the short- and long-term effects of tail amputation in pigs on caudal DRG gene expression at different stages of development, particularly in relation to genes associated with nociception and pain. Microarrays were used to analyse whole DRG transcriptomes from tail amputated and sham-treated pigs 1, 8 and 16 weeks following tail treatment at either 3 or 63 days of age (8 pigs/treatment/age/time after treatment; n=96). Tail amputation induced marked changes in gene expression (up and down) compared to sham-treated intact controls for all treatment ages and time points after tail treatment. Sustained changes in gene expression in tail amputated pigs were still evident four months after tail injury. Gene correlation network analysis revealed two coexpression clusters associated with amputation: Cluster A (759 down-regulated) and Cluster B (273 up-regulated) genes. Gene ontology (GO) enrichment analysis identified 124 genes in Cluster A and 61 genes in Cluster B associated with both ‘inflammatory pain’ and ‘neuropathic pain’. In Cluster A, gene family members of ion channels e.g. voltage-gated potassium channels (VGPC) and receptors e.g. GABA receptors, were significantly down-regulated compared to shams, both of which are linked to increased peripheral nerve excitability after axotomy. Up-regulated gene families in Cluster B were linked to transcriptional regulation, inflammation, tissue remodelling and regulatory neuropeptide activity. These findings, demonstrate that tail amputation causes sustained transcriptomic expression changes in caudal DRG cells involved in inflammatory and neuropathic pain pathways
    corecore