13,054 research outputs found

    Effects of backing plates on the electron exposure of thin polymer films

    Get PDF
    The effects of backing plates on the radiation dose received by thin nylon films were calculated using recently developed multilayer electron transport codes. The film dose increased with increasing atomic number of the backing plate. The estimated dose could be off by a factor of 2 or more if the backing plate were ignored in the calculations

    On-demand microwave generator of shaped single photons

    Get PDF
    We demonstrate the full functionality of a circuit that generates single microwave photons on demand, with a wave packet that can be modulated with a near-arbitrary shape. We achieve such a high tunability by coupling a superconducting qubit near the end of a semi-infinite transmission line. A dc superconducting quantum interference device shunts the line to ground and is employed to modify the spatial dependence of the electromagnetic mode structure in the transmission line. This control allows us to couple and decouple the qubit from the line, shaping its emission rate on fast time scales. Our decoupling scheme is applicable to all types of superconducting qubits and other solid-state systems and can be generalized to multiple qubits as well as to resonators.Comment: 10 pages, 7 figures. Published versio

    Features and flaws of a contact interaction treatment of the kaon

    Get PDF
    Elastic and semileptonic transition form factors for the kaon and pion are calculated using the leading-order in a global-symmetry-preserving truncation of the Dyson-Schwinger equations and a momentum-independent form for the associated kernels in the gap and Bethe-Salpeter equations. The computed form factors are compared both with those obtained using the same truncation but an interaction that preserves the one-loop renormalisation-group behaviour of QCD and with data. The comparisons show that: in connection with observables revealed by probes with |Q^2|<~ M^2, where M~0.4GeV is an infrared value of the dressed-quark mass, results obtained using a symmetry-preserving regularisation of the contact-interaction are not realistically distinguishable from those produced by more sophisticated kernels; and available data on kaon form factors do not extend into the domain whereupon one could distinguish between the interactions. The situation is different if one includes the domain Q^2>M^2. Thereupon, a fully consistent treatment of the contact interaction produces form factors that are typically harder than those obtained with QCD renormalisation-group-improved kernels. Amongst other things also described are a Ward identity for the inhomogeneous scalar vertex, similarity between the charge distribution of a dressed-u-quark in the K^+ and that of the dressed-u-quark in the pi^+, and reflections upon the point whereat one might begin to see perturbative behaviour in the pion form factor. Interpolations of the form factors are provided, which should assist in working to chart the interaction between light-quarks by explicating the impact on hadron properties of differing assumptions about the behaviour of the Bethe-Salpeter kernel.Comment: 17 pages, 9 figures, 4 table

    Characterization of a multimode coplanar waveguide parametric amplifier

    Full text link
    We characterize a novel Josephson parametric amplifier based on a flux-tunable quarter-wavelength resonator. The fundamental resonance frequency is ~1GHz, but we use higher modes of the resonator for our measurements. An on-chip tuning line allows for magnetic flux pumping of the amplifier. We investigate and compare degenerate parametric amplification, involving a single mode, and nondegenerate parametric amplification, using a pair of modes. We show that we reach quantum-limited noise performance in both cases, and we show that the added noise can be less than 0.5 added photons in the case of low gain

    Commentary on rainbow-ladder truncation for excited states and exotics

    Full text link
    Ground-state, radially-excited and exotic scalar-, vector- and flavoured-pseudoscalar-mesons are studied in rainbow-ladder truncation using an interaction kernel that is consonant with modern DSE- and lattice-QCD results. The inability of this truncation to provide realistic predictions for the masses of excited- and exotic-states is confirmed and explained. On the other hand, its application does provide information that is potentially useful in proceeding beyond this leading-order truncation, e.g.: assisting with development of projection techniques that ease the computation of excited state properties; placing qualitative constraints on the long-range behaviour of the interaction kernel; and highlighting and illustrating some features of hadron observables that do not depend on details of the dynamics.Comment: 10 pages, 6 figures, 2 table

    Systematic Renormalization in Hamiltonian Light-Front Field Theory

    Get PDF
    We develop a systematic method for computing a renormalized light-front field theory Hamiltonian that can lead to bound states that rapidly converge in an expansion in free-particle Fock-space sectors. To accomplish this without dropping any Fock sectors from the theory, and to regulate the Hamiltonian, we suppress the matrix elements of the Hamiltonian between free-particle Fock-space states that differ in free mass by more than a cutoff. The cutoff violates a number of physical principles of the theory, and thus the Hamiltonian is not just the canonical Hamiltonian with masses and couplings redefined by renormalization. Instead, the Hamiltonian must be allowed to contain all operators that are consistent with the unviolated physical principles of the theory. We show that if we require the Hamiltonian to produce cutoff-independent physical quantities and we require it to respect the unviolated physical principles of the theory, then its matrix elements are uniquely determined in terms of the fundamental parameters of the theory. This method is designed to be applied to QCD, but for simplicity, we illustrate our method by computing and analyzing second- and third-order matrix elements of the Hamiltonian in massless phi-cubed theory in six dimensions.Comment: 47 pages, 6 figures; improved referencing, minor presentation change

    Generating Multimode Entangled Microwaves with a Superconducting Parametric Cavity

    Get PDF
    In this Letter, we demonstrate the generation of multimode entangled states of propagating microwaves. The entangled states are generated by parametrically pumping a multimode superconducting cavity. By combining different pump frequencies, applied simultaneously to the device, we can produce different entanglement structures in a programable fashion. The Gaussian output states are fully characterized by measuring the full covariance matrices of the modes. The covariance matrices are absolutely calibrated using an in situ microwave calibration source, a shot noise tunnel junction. Applying a variety of entanglement measures, we demonstrate both full inseparability and genuine tripartite entanglement of the states. Our method is easily extensible to more modes.Comment: 5 pages, 1 figures, 1 tabl

    Crucial Dependence of ``Precarious'' and ``Autonomous'' phi^4s Upon the Normal-ordering Mass

    Get PDF
    Using the Gaussian wave-functional approach with the normal-ordering renormalization prescription, we show that for the (3+1)-dimensional massive lambda phi^4 theory, ``precarious'' and ``autonomous'' phi^4s can exist if and only if the normal-ordering mass is equal to the classical masses at the symmetrc and asymmetric vacua, respectively.Comment: 6 pages, no figures, Revtex file, accepted for publication in Mod. Phys. Lett.
    • …
    corecore