6,476 research outputs found

    Minimal basilar membrane motion in low-frequency hearing

    Get PDF
    Low-frequency hearing is critically important for speech and music perception, but no mechanical measurements have previously been available from inner ears with intact low-frequency parts. These regions of the cochlea may function in ways different from the extensively studied high-frequency regions, where the sensory outer hair cells produce force that greatly increases the sound-evoked vibrations of the basilar membrane. We used laser interferometry in vitro and optical coherence tomography in vivo to study the low-frequency part of the guinea pig cochlea, and found that sound stimulation caused motion of a minimal portion of the basilar membrane. Outside the region of peak movement, an exponential decline in motion amplitude occurred across the basilar membrane. The moving region had different dependence on stimulus frequency than the vibrations measured near the mechanosensitive stereocilia. This behavior differs substantially from the behavior found in the extensively studied high-frequency regions of the cochlea

    Kinetic model of PFAS removal by semi-batch foam fractionation and validation by experimental data for K-PFOS

    Full text link
    Adsorptive bubble separation techniques such as foam fractionation have recently been applied for the extraction of per- and polyfluoroalkyl substances (PFAS) from waters at both laboratory and operational scales. However, few authors have developed mathematical models of their removal of PFAS. This study presents a theoretical framework for the kinetics of PFAS removal from fresh and monovalent saline waters by a semi-batch foam fractionation process, by the mechanisms of adsorption, entrainment and volatilization, as a function of pertinent parameters including PFAS air-water adsorption, bubble radius, electrolyte concentration and ionic strength, PFAS volatility, and flow and geometric parameters. The freshwater model is validated for the removal of potassium perfluorooctane sulfonate (K-PFOS) using published experimental data (Meng, P. et al., Chemosphere, 2018, 203, 263–270). The proposed models provide quantitative tools for process design and the optimization of individual PFAS removal by semi-batch adsorptive bubble separation techniques such as foam fractionation

    Immigration Federalism: A Reappraisal

    Get PDF
    This Article identifies how the current spate of state and local regulation is changing the way elected officials, scholars, courts, and the public think about the constitutional dimensions of immigration law and governmental responsibility for immigration enforcement. Reinvigorating the theoretical possibilities left open by the Supreme Court in its 1875 Chy Lung v. Freeman decision, state and local offi- cials characterize their laws as unavoidable responses to the policy problems they face when they are squeezed between the challenges of unauthorized migration and the federal government’s failure to fix a broken system. In the October 2012 term, in Arizona v. United States, the Court addressed, but did not settle, the difficult empirical, theoretical, and constitutional questions necessitated by these enactments and their attendant justifications. Our empirical investigation, however, discovered that most state and local immigration laws are not organic policy responses to pressing demographic challenges. Instead, such laws are the product of a more nuanced and politicized process in which demographic concerns are neither neces- sary nor sufficient factors and in which federal inactivity and subfederal activity are related phenomena, fomented by the same actors. This Article focuses on the con- stitutional and theoretical implications of these processes: It presents an evidence- based theory of state and local policy proliferation; it cautions legal scholars to rethink functionalist accounts for the rise of such laws; and it advises courts to reassess their use of traditional federalism frameworks to evaluate these sub federal enactments

    The importance of metagenomic surveys to microbial ecology: or why Darwin would have been a metagenomic scientist

    Get PDF
    Scientific discovery is incremental. The Merriam-Webster definition of 'Scientific Method' is "principles and procedures for the systematic pursuit of knowledge involving the recognition and formulation of a problem, the collection of data through observation and experiment, and the formulation and testing of hypotheses". Scientists are taught to be excellent observers, as observations create questions, which in turn generate hypotheses. After centuries of science we tend to assume that we have enough observations to drive science, and enable the small steps and giant leaps which lead to theories and subsequent testable hypotheses. One excellent example of this is Charles Darwin's Voyage of the Beagle, which was essentially an opportunistic survey of biodiversity. Today, obtaining funding for even small-scale surveys of life on Earth is difficult; but few argue the importance of the theory that was generated by Darwin from his observations made during this epic journey. However, these observations, even combined with the parallel work of Alfred Russell Wallace at around the same time have still not generated an indisputable 'law of biology'. The fact that evolution remains a 'theory', at least to the general public, suggests that surveys for new data need to be taken to a new level

    The evolution of the terrestrial-terminating Irish Sea glacier during the last glaciation

    Get PDF
    Here we reconstruct the last advance to maximum limits and retreat of the Irish Sea Glacier (ISG), the only land‐terminating ice lobe of the western British Irish Ice Sheet. A series of reverse bedrock slopes rendered proglacial lakes endemic, forming time‐transgressive moraine‐ and bedrock‐dammed basins that evolved with ice marginal retreat. Combining, for the first time on glacial sediments, optically stimulated luminescence (OSL) bleaching profiles for cobbles with single grain and small aliquot OSL measurements on sands, has produced a coherent chronology from these heterogeneously bleached samples. This chronology constrains what is globally an early build‐up of ice during late Marine Isotope Stage 3 and Greenland Stadial (GS) 5, with ice margins reaching south Lancashire by 30 ± 1.2 ka, followed by a 120‐km advance at 28.3 ± 1.4 ka reaching its 26.5 ± 1.1 ka maximum extent during GS‐3. Early retreat during GS‐3 reflects piracy of ice sources shared with the Irish‐Sea Ice Stream (ISIS), starving the ISG. With ISG retreat, an opportunistic readvance of Welsh ice during GS‐2 rode over the ISG moraines occupying the space vacated, with ice margins oscillating within a substantial glacial over‐deepening. Our geomorphological chronosequence shows a glacial system forced by climate but mediated by piracy of ice sources shared with the ISIS, changing flow regimes and fronting environments
    corecore