535 research outputs found

    Radial Breathing Modes in Cosmochemistry and Meteoritics

    Get PDF
    One area of continuing interest in cosmochemistry and meteoritics (C&M) is the identification of the nature of Q-phase, although some researchers in C&M are not reporting relevant portions of Raman spectral data. Q is the unidentified carrier of noble gases in carbonaceous chondrites (CCs). Being carbonaceous, the focus has been on any number of Q-candidates arising from the sp2 hybridization of carbon (C). These all derive from various forms of graphene, a monolayer of C atoms packed into a two-dimensional (2D) hexagonal honeycomb lattice that is the basic building block for graphitic materials of all other dimensions for sp2 allotropes of C. As a basic lattice, 2D graphene can be curled into fullerenes (0D), wrapped into carbon nanotubes or CNTs (1D), and stacked into graphite (3D). These take such additional forms as scroll-like carbon whiskers, carbon fibers, carbon onions, GPCs (graphite polyhedral crystals) [6], and GICs (graphite intercalation compounds). Although all of these have been observed in meteoritics, the issue is which can explain the Q-abundances. In brief, one or more of the 0D-3D sp2 hybridization forms of C is Q. For some Q-candidates, the radial breathing modes (RBMs) are the most important Raman active vibrational modes that exist, and bear a direct relevance to solving this puzzle. Typically in C&M they are ignored when present. Their importance is addressed here as smoking-gun signatures for certain Q-candidates and are very relevant to the ultimate identification of Q

    Ecological dynamics and human welfare: a case study of population, health and nutrition in Zimbabwe

    Get PDF
    This thesis examines the impact of seasonal and inter-annual variations in rainfall on food supply and disease environment, and hence the biological welfare of savannah populations in southern Zimbabwe. Ecological dynamics are thought to determine the impact of rainfall, and this hypothesis is tested through the comparison of populations either side of a major ecological boundary between heavy clay rich and sandy soils. Due to differences in soil-moisture productivity relations, and the level and form of ecological heterogeneity, the sandveld environment shows much less seasonal and inter-annual variation in agro-ecological productivity than does clayveld, and this is reflected in food supply and consumption. Child anthropometric and birth weight data from several years shows opposite seasonality, and weight-loss in a serious drought was most marked on clay-rich soils as predicted. Differences in soil-moisture relations also influence disease environment dynamics; child morbidity shows the same seasonal and inter-annual contrasts between the zones as found with nutritional status. Furthermore, infant mortality is increased following dry years on clay-rich soils whilst high rainfall leads to increased infant mortality on the sandy soils. These differences in welfare dynamics between sandveld and clayveld appear to typify conditions in other moist and dry savannah areas respectively. Variability in grain production results from unequal access to livestock for ploughing and manure, but urban wage labour derived remittances also affect wealth. The extent and nature of socio-economic differentiation varies between ecological zones for historical reasons, and its impact on welfare (together with that of religion and maternal education) is variable and complex, operating at several levels in household and lineage. Maternal education has a marked impact on child well-being, particularly upon infant mortality. Dramatic improvements in Infant mortality and declines in fertility since Independence (1980) reflect upgrading of medical services and education provision for women, Indicating the limits of ecological welfare determinants

    Patients' inability to perform a preoperative cardiopulmonary exercise test or demonstrate an anaerobic threshold is associated with inferior outcomes after major colorectal surgery.

    Get PDF
    BACKGROUND: Surgical patients with poor functional capacity, determined by oxygen consumption at anaerobic threshold (AT) during cardiopulmonary exercise testing (CPET), experience longer hospital stays and worse short- and medium-term survival. However, previous studies excluded patients who were unable to perform a CPET or who failed to demonstrate an AT. We hypothesized that such patients are at risk of inferior outcomes after elective surgery. METHODS: All patients undergoing major colorectal surgery attempted CPET to assist in the planning of care. Patients were stratified by their test results into Fit (AT ≥ 11.0 ml O2 kg(-1) min(-1)), Unfit (AT < 11.0 ml O2 kg(-1) min(-1)), or Unable to CPET groups (failed to pedal or demonstrate an AT). For each group, we determined hospital stay and mortality. RESULTS: Between March 2009 and April 2010, 269 consecutive patients were screened, and proceeded to bowel resection. Median hospital stay was 8 days (IQR 5.1-13.4) and there were 44 deaths (16%) at 2 yr; 26 (9.7%) patients were categorized as Unable to CPET, 69 (25.7%) Unfit and 174 (64.7%) Fit. There were statistically significant differences between the three groups in hospital stay [median (IQR) 14.0 (10.5-23.8) vs 9.9 (5.5-15) vs 7.1 (4.9-10.8) days, P < 0.01] and mortality at 2 yr [11/26 (42%) vs 14/69 (20%) vs 19/174 (11%), respectively (P < 0.01)] although the differences between Unable and Unfit were not statistically different. CONCLUSIONS: Patients' inability to perform CPET is associated with inferior outcomes after major colorectal surgery. Future studies evaluating CPET in risk assessment for major surgery should report outcomes for this subgroup

    Randomly dilute Ising model: A nonperturbative approach

    Full text link
    The N-vector cubic model relevant, among others, to the physics of the randomly dilute Ising model is analyzed in arbitrary dimension by means of an exact renormalization-group equation. This study provides a unified picture of its critical physics between two and four dimensions. We give the critical exponents for the three-dimensional randomly dilute Ising model which are in good agreement with experimental and numerical data. The relevance of the cubic anisotropy in the O(N) model is also treated.Comment: 4 pages, published versio

    Comparison of Rotational Energies and Rigidity of OCS-paraH_2 and OCS-4He complexes

    Full text link
    We analyze the nature of the rotational energy level structure of the OCS-He and OCS-H_2 complexes with a comparison of exact calculations to several differentdynamical approximations. We compare with the clamped coordinate quasiadiabatic approximation that introduces an effective potential for each asymmetric rotor level, with an effective rotation Hamiltonian constructed from ground state averages of the inverse of the inertial matrix, and investigate the usefulness of the Eckart condition to decouple rotations and vibrations of these weakly bound complexes between linear OCS and 4He or H_2. Comparison with exact results allows an assessment of the accuracies of the different approximate methods and indicates which approaches are suitable for larger clusters of OCS with 4He and with H_2. We find the OCS-H_2 complex is considerably more rigid than the OCS-4He complex, suggesting that semi-rigid models are useful for analysis of larger clusters of H_2 with OCS.Comment: accepted by Chem. Phys., 200

    Current-density functional for disordered systems

    Get PDF
    The effective action for the current and density is shown to satisfy an evolution equation, the functional generalization of Callan-Symanzik equation. The solution describes the dependence of the one-particle irreducible vertex functions on the strength of the quenched disorder and the annealed Coulomb interaction. The result is non-perturbative, no small parameter is assumed. The a.c. conductivity is obtained by the numerical solution of the evolution equation on finite lattices in the absence of the Coulomb interaction. The static limit is performed and the conductivity is found to be vanishing beyond a certain threshold of the impurity strength.Comment: final version, 28 pages, 17 figures, to appear in Phys. Rev.

    Randomized controlled trial of intraoperative goal-directed fluid therapy in aerobically fit and unfit patients having major colorectal surgery.

    Get PDF
    BACKGROUND: Intraoperative fluid therapy regimens using oesophageal Doppler monitoring (ODM) to optimize stroke volume (SV) (goal-directed fluid therapy, GDT) have been associated with a reduction in length of stay (LOS) and complication rates after major surgery. We hypothesized that intraoperative GDT would reduce the time to surgical readiness for discharge (RfD) of patients having major elective colorectal surgery but that this effect might be less marked in aerobically fit patients. METHODS: In this double-blinded controlled trial, 179 patients undergoing major open or laparoscopic colorectal surgery were characterized as aerobically 'fit' (n=123) or 'unfit' (n=56) on the basis of their performance during a cardiopulmonary exercise test. Within these fitness strata, patients were randomized to receive a standard fluid regimen with or without ODM-guided intraoperative GDT. RESULTS: GDT patients received an average of 1360 ml of additional intraoperative colloid. The mean cardiac index and SV at skin closure were significantly higher in the GDT group than in controls. Times to RfD and LOS were longer in GDT than control patients but did not reach statistical significance (median 6.8 vs 4.9 days, P=0.09, and median 8.8 vs 6.7 days, P=0.09, respectively). Fit GDT patients had an increased RfD (median 7.0 vs 4.7 days; P=0.01) and LOS (median 8.8 vs 6.0 days; P=0.01) compared with controls. CONCLUSIONS: Intraoperative SV optimization conferred no additional benefit over standard fluid therapy. In an aerobically fit subgroup of patients, GDT was associated with detrimental effects on the primary outcome. TRIAL REGISTRY: UK NIHR CRN 7285, ISRCTN 14680495. http://public.ukcrn.org.uk/Search/StudyDetail.aspx?StudyID=7285

    Exact renormalization group flow equations for non-relativistic fermions: scaling towards the Fermi surface

    Full text link
    We construct exact functional renormalization group (RG) flow equations for non-relativistic fermions in arbitrary dimensions, taking into account not only mode elimination but also the rescaling of the momenta, frequencies and the fermionic fields. The complete RG flow of all relevant, marginal and irrelevant couplings can be described by a system of coupled flow equations for the irreducible n-point vertices. Introducing suitable dimensionless variables, we obtain flow equations for generalized scaling functions which are continuous functions of the flow parameter, even if we consider quantities which are dominated by momenta close to the Fermi surface, such as the density-density correlation function at long wavelengths. We also show how the problem of constructing the renormalized Fermi surface can be reduced to the problem of finding the RG fixed point of the irreducible two-point vertex at vanishing momentum and frequency. We argue that only if the degrees of freedom are properly rescaled it is possible to reach scale-invariant non-Fermi liquid fixed points within a truncation of the exact RG flow equations.Comment: 20 Revtex pages, with 4 figures; final version to appear in Phys. Rev. B; references and some explanations adde

    Electrons in an annealed environment: A special case of the interacting electron problem

    Full text link
    The problem of noninteracting electrons in the presence of annealed magnetic disorder, in addition to nonmagnetic quenched disorder, is considered. It is shown that the proper physical interpretation of this model is one of electrons interacting via a potential that is long-ranged in time, and that its technical analysis by means of renormalization group techniques must also be done in analogy to the interacting problem. As a result, and contrary to previous claims, the model does not simply describe a metal-insulator transition in d=2+ϵd=2+\epsilon (ϵ1\epsilon\ll 1) dimensions. Rather, it describes a transition to a ferromagnetic state that, as a function of the disorder, precedes the metal-insulator transition close to d=2d=2. In d=3d=3, a transition from a paramagnetic metal to a paramagnetic insulator is possible.Comment: 13 pp., LaTeX, 2 eps figs; final version as publishe

    Renormalization of the mass gap

    Full text link
    The full gluon propagator relevant for the description of the truly non-perturbative QCD dynamics, the so-called intrinsically non-perturbative gluon propagator has been derived in our previous work. It explicitly depends on the regularized mass gap, which dominates its structure at small gluon momentum. It is automatically transversal in a gauge invariant way. It is characterized by the presence of severe infrared singularities at small gluon momentum, so the gluons remain massless, and this does not depend on the gauge choice. In this paper we have shown how precisely the renormalization program for the regularized mass gap should be performed. We have also shown how precisely severe infrared singularities should be correctly treated. This allowed to analytically formulate the exact and gauge-invariant criteria of gluon and quark confinement. After the renormalization program is completed, one can derive the gluon propagator applicable for the calculation of physical observables processes, etc., in low-energy QCD from first principles.Comment: 16 pages, no figures, no tables, some minor changes are introduce
    corecore