115,630 research outputs found

    Extended Uniform Ginzburg-Landau Theory for Novel Multiband Superconductors

    Full text link
    The recently discovered multiband superconductors have created a new class of novel superconductors. In these materials multiple superconducting gaps arise due to the formation of Cooper pairs on different sheets of the Fermi surfaces. An important feature of these superconductors is the interband couplings, which not only change the individual gap properties, but also create new collective modes. Here we investigate the effect of the interband couplings in the Ginzburg-Landau theory. We produce a general τ(2n+1)/2\tau^{(2n+1)/2} expansion (τ=1T/Tc\tau = 1-T/T_c) and show that this expansion has unexpected behaviour for n2n\geq 2. This point emphasises the weaker validity of the GL theory for lower temperatures and gives credence to the existence of hidden criticality near the critical temperature of the uncoupled subdominant band.Comment: 10 pages, 4 figure

    Leveraging HTC for UK eScience with very large Condor pools: demand for transforming untapped power into results

    Get PDF
    We provide an insight into the demand from the UK eScience community for very large HighThroughput Computing resources and provide an example of such a resource in current productionuse: the 930-node eMinerals Condor pool at UCL. We demonstrate the significant benefits thisresource has provided to UK eScientists via quickly and easily realising results throughout a rangeof problem areas. We demonstrate the value added by the pool to UCL I.S infrastructure andprovide a case for the expansion of very large Condor resources within the UK eScience Gridinfrastructure. We provide examples of the technical and administrative difficulties faced whenscaling up to institutional Condor pools, and propose the introduction of a UK Condor/HTCworking group to co-ordinate the mid to long term UK eScience Condor development, deploymentand support requirements, starting with the inaugural UK Condor Week in October 2004

    Novel superconductivity: from bulk to nano systems

    Get PDF
    We begin with an introduction of superconductivity by giving a brief history of the phenomenon. The phenomenological Ginzburg–Landau theory and the microscopic theory of Bardeen, Cooper and Schrieffer are outlined. In view of recently available multi-band superconductors, relevant theories of both types are discussed. Unlike the traditional GL theory an extended GL theory is developed relevant to temperatures below the critical temperature. Superconductivity in a nanosystem is the highlight of the remaining part of the paper. Theories and experiments are discussed to give an interested reader an updated account and overview of what is new in this active area of research

    Operational alternatives for LANDSAT in California

    Get PDF
    Data integration is defined and examined as the means of promoting data sharing among the various governmental and private geobased information systems in California. Elements of vertical integration considered included technical factors (such as resolution and classification) and institutional factors (such as organizational control, and legal and political barriers). Attempts are made to fit the theoretical elements of vertical integration into a meaningful structure for looking at the problem from a statewide focus. Both manual (mapped) and machine readable data systems are included. Special attention is given to LANDSAT imagery because of its strong potential for integrated use and its primary in the California Integrated Remote Sensing System program

    The Brown dwarf Atmosphere Monitoring (BAM) Project I: The largest near-IR monitoring survey of L- & T-dwarfs

    Full text link
    Using SofI on the 3.5m New Technology Telescope, we have conducted an extensive near-infrared monitoring survey of an unbiased sample of 69 brown dwarfs spanning the L0 and T8 spectral range, with at least one example of each spectral type. Each target was observed for a 2-4 hour period in the Js-band, and the median photometric precision of the data is ~0.7%. A total of 14 brown dwarfs were identified as variables with min-to-max amplitudes ranging from 1.7% to 10.8% over the observed duration. All variables satisfy a statistical significance threshold with a p-value <5% based on comparison with the median reference star light curve. Approximately half of the variables show sinusoidal amplitude variations similar to 2M2139, and the remainder shows short timescale evolving light curves similar to SIMP0136. The L/T transition has been suggested to be a region of a higher degree of variability if patchy clouds are present and this survey was designed to test the patchy cloud model with photometric monitoring of both the L/T transition and non-transition brown dwarfs. Considering the targets identified as variable with the same statistical threshold, the measured variability frequency of 13^{+10}_{-4}% for the L7 -- T4 transition region is indistinguishable from that of the earlier spectral types (32^{+11}_{-8}%), the later spectral types (13^{+10}_{-4}%), or the combination of all non-transition region brown dwarfs (21^{+7}_{-5}%). The variables are not concentrated at the transition, in a specific colour, or with binaries. We note that of the systems previously monitored for variability only ~60% maintained the state of variability (variable or constant), with the remaining switching states. The 14 variables include nine newly identified variables that will provide important systems for follow-up multi-wavelength monitoring to further investigate brown dwarf atmosphere physics.Comment: Accepted for publication in the Astronomy & Astrophysics. 15 pages, 13 figure

    The effect of stirring on the heterogeneous nucleation of water and of clathrates of tetrahydrofuran/water mixtures

    Full text link
    The statistics of liquid-to-crystal nucleation are measured for both water and for clathrate-forming mixtures of tetrahydrofuran (THF) and water using an automatic lag time apparatus (ALTA). We measure the nucleation temperature using this apparatus in which a single sample is repeatedly cooled, nucleated and thawed. The effect of stirring on nucleation has been evaluated numerically and is discussed. We find that stirring of the solution makes no difference to the nucleation temperature of a given solution in a given tube.Comment: 4 pages, 4 figure

    Aerosol activation and cloud processing in the global aerosol-climate model ECHAM5-HAM

    Get PDF
    A parameterization for cloud processing is presented that calculates activation of aerosol particles to cloud drops, cloud drop size, and pH-dependent aqueous phase sulfur chemistry. The parameterization is implemented in the global aerosol-climate model ECHAM5-HAM. The cloud processing parameterization uses updraft speed, temperature, and aerosol size and chemical parameters simulated by ECHAM5-HAM to estimate the maximum supersaturation at the cloud base, and subsequently the cloud drop number concentration (CDNC) due to activation. In-cloud sulfate production occurs through oxidation of dissolved SO2 by ozone and hydrogen peroxide. The model simulates realistic distributions for annually averaged CDNC although it is underestimated especially in remote marine regions. On average, CDNC is dominated by cloud droplets growing on particles from the accumulation mode, with smaller contributions from the Aitken and coarse modes. The simulations indicate that in-cloud sulfate production is a potentially important source of accumulation mode sized cloud condensation nuclei, due to chemical growth of activated Aitken particles and to enhanced coalescence of processed particles. The strength of this source depends on the distribution of produced sulfate over the activated modes. This distribution is affected by uncertainties in many parameters that play a direct role in particle activation, such as the updraft velocity, the aerosol chemical composition and the organic solubility, and the simulated CDNC is found to be relatively sensitive to these uncertainties
    corecore