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Abstract
We begin with an introduction of superconductivity by giving a brief history of the phenomenon.
The phenomenological Ginzburg–Landau theory and the microscopic theory of Bardeen, Cooper
and Schrieffer are outlined. In view of recently available multi-band superconductors, relevant
theories of both types are discussed. Unlike the traditional GL theory an extended GL theory is
developed relevant to temperatures below the critical temperature. Superconductivity in a
nanosystem is the highlight of the remaining part of the paper. Theories and experiments are
discussed to give an interested reader an updated account and overview of what is new in this
active area of research.
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1. Introduction (with a brief history)

Superconductivity is an unanticipated phenomenon, which
has a fascinating history in the realm of quantum science. The
surprising fact that certain materials below a critical tem-
perature completely lose their electrical resistance and at the
same time repel a magnet, remained a mystery until a
microscopic explanation became available in 1957 nearly five
decades after its discovery. During these five decades there
were many attempts to understand superconductivity both
theoretically and experimentally. Two important phenomen-
ological theories are mentioned here.

(i) A successful phenomenological theory [1] was pro-
posed in 1935 by the London brothers, Fritz and Heinz.
It is a macroscopically correct theory to treat electro-
dynamical aspects. They showed that the current
density J in a superconductor is proportional to the

magnetic vector potential A. The proportionality
constant is λ−~ 2, where λ is the magnetic penetration
depth, one of the characteristic lengths of a super-
conductor. It relates to the superfluid density ns, as
λ− n~ s

2 . The London brothers’ theory both implies
zero resistance and leads to a consistent explanation of
the Meissner effect (repulsion of the magnetic field).

(ii) In 1950 Ginzburg and Landau (GL) gave their
celebrated phenomenological theory of superconductiv-
ity [2]. The GL theory, also known as Ψ theory,
proposes an order parameter Ψ which encodes the
nature of superconductivity through the symmetry of
the system. To this day the GL theory remains a
powerful practical tool that succinctly explains all the
thermo- and electrodynamical properties. It also leads to
a second fundamentally significant length ξ, the
coherence length describing the spatial scale over
which the order parameter varies.

In terms of these two characteristic lengths GL defined a
quantity κ λ ξ= / . κ identifies the type of superconductivity
(Type I or Type II) from the relation κ < 1/ 2 or >1/ 2 .
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This important relation signifies whether the surface free
energy of a superconductor is positive or negative implying
the magnetic field to be completely expelled from the
superconductor (Meissner effect) or the magnetic field can be
allowed in the superconductor as quantized vortices, respec-
tively. For Type II superconductors, increasing the magnetic
field causes the vortices to form a spatially ordered structure
of vortex rods parallel to the magnetic field, known as an
Abrikosov lattice [3]. Abrikosov’s work was based on the
solution of GL equations in presence of a magnetic field.

In 1950 two American groups observed the isotope effect
that suggest that the transition temperature, Tc, changes
inversely as the isotopic mass M , namely −T M~c

a, where
a ~ 0.5. This is strong evidence to invoke electron–phonon
interaction in the theory of superconductivity as suggested by
Fröhlich. In 1955 Bardeen and Pines [4] studied the nature of
dielectric screening in a metal and there was a strong indi-
cation that, near the Fermi surface, the dynamics of the
dielectric function can change the net interaction between two
electrons to be effectively attractive. This happens when the
dynamically screened Coulomb interaction is overcome by
the electron–phonon interaction, which creates a local dis-
tortion of the positive-ion lattice in resonance with the elec-
tronic motion.

On this background Bardeen has a strong conviction that
an electron pair near the Fermi surface can be bound by an
attractive potential, which was confirmed cleverly by Cooper
in 1956 [5]. He showed that a normal Fermi liquid in the
presence of even the weakest attractive force close to the
Fermi surface leads to an isolated bound state pair with a
discrete negative energy relative to the Fermi energy. The
components of the pair retain their Fermi velocities, yet the
pair as a quantized entity has zero total momentum and zero
total spin. With no loss of time Bardeen, Cooper and
Schrieffer [6] formulated what would happen when many
such pair states near the Fermi surface undergo a fermionic
condensation. By this a new ground state is generated sepa-
rated from the normal ground state by an energy gap, Δ. This
is the celebrated BCS theory, considered as the standard
model for metallic superconductors. It successfully explains
at least qualitatively a host of experimental findings and
predicts many new superconducting properties. This theory
explained almost all known properties of superconductors:
excited states, specific heat, critical magnetic fields, ultrasonic
attenuation, Meissner effect, penetration depth etc. Besides
these, it predicted Δ =T(0)/ 1.76c , the specific heat jump at Tc

Δ =C C/ 1.43N , the magnitude of the gap Δ, dependent on the
strength of attractive interaction and many others.

Soon after the discovery Anderson [7] noted that the
central character of superconductivity extends well beyond
the domain of the BCS theory itself. He raised more funda-
mental issues such as broken gauge symmetry, which was
further investigated by Nambu in 1960 [8]. Clarification of
pairing mechanism and the simplification of its derivation was
given in 1958 independently by Bogolyubov [9] and Vala-
tin [10].

We noted above that the GL theory is our best phe-
nomenological theory with many advantages for working out

the real properties of inhomogeneous superconducting mate-
rials. This theory is also used in a variety of problems in other
areas of physics, namely high energy physics, gauge theory,
nonlinear optics and others.

1.1. GL theory derivable from BCS

In 1958 Gor’kov reformulated the BCS theory of super-
conductivity in the language of quantum field theory [11].
Soon after, Gor’kov made an important contribution to relate
phenomenological GL theory with the microscopic BCS
within some limitations. We present here briefly the
equivalence.

1.1.1. GL theory. In GL theory the free energy density, f of a
superconductor near the normal to superconductive transition
is expressed in terms of a complex order parameter (field) Ψ ,
which is nonzero below Tc

α Ψ β Ψ

ħ Ψ
π

= + + +

× − − +⎜ ⎟⎛
⎝
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f f
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Here α and β are two phenomenological parameters. α is
T -dependent and chosen in the form α = −a T T( )c . fn0 is the
normal state free energy density, m* is the effective mass and
e is the charge of an electron. A is the magnetic vector
potential given by = ×h A, h being the magnetic field. By
varying the free energy with respect to Ψ and A, one obtains
two GL equations
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Here j is the current density. Solution of these two
equations (with appropriate boundary conditions) determines
the order parameter and the current density.

For a homogeneous superconductor the first GL equation
gives Ψ β= − −a T T( )/c

2 for <T Tc. It is a nontrivial
solution typical for a second-order transition.

For non-zero magnetic field and non-zero gradient of Ψ ,
one can calculate the characteristic lengths ξ (coherence
length) and λ (penetration depth), as mentioned earlier. Here
it is noted that the basis of the theory rests on two
approximations correct around the critical temperature Tc.
The order parameter Ψ∣ ∣ is small near Tc and Ψ τ~ 1/2 where
τ = −( )T T1 / c . Despite these limitations there is a myth that
the GL theory applies not only around Tc, rather it is useful for
very low temperature. More in the next section.

1.1.2. BCS theory. It is developed with an assumption that
there is an attractive interaction between a pair of electrons by
the mediation of a phonon in conventional metallic systems.

2
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The theory can be generalised such that any boson can
mediate the interaction to produce a bound pair. The many
body reduced Hamiltonian is written as

∑ξ= +
σ

σ σH c c V , (4)int

k

k k k
†

∑=
′

′ ↑ − ↓ − ′↓ ′↑V
N

g c c c c
1

, (5)int

kk
kk k k k k

† †

where ξk is the electron excitation energy, ′gkk is the pairing
interaction involving k and −k and ′k and − ′k with up and
down spins, respectively. Using any one of the techniques
(BCS variational method, Bogolyubov–Valatin canonical
transformation, Bogolyubov–de Gennes approach or
Gor’kov’s thermodynamic Green functions) we obtain the
BCS gap equation using the definition

∑Δ = −
′

′ − ′↓ ′↑
N

g c c
1

. (6)k

k
kk k k

After going through some algebra [12–14], at =T 0 one
obtains the gap equation
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= −
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Assuming = −′g gkk 0 for ξ ξ ω<′, Dk k (Debye cut-
off), the k-independent gap equation is

∑Δ
Δ

ξ Δ
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+
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If the density of states near EF is nearly constant within
ω± D, the gap is given by

Δ
ω

=
( )g Nsinh 1/ (0)

, (9)D
0

0

N (0) is the density of states at the Fermi energy. In the
weak-coupling case g N (0)0 being small, the gap is now

Δ ω= ( )g N2 exp 1/ (0) . (10)D0 0

At finite temperature, this equation is
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1.1.3. Equivalence of GL with BCS near Tc. Following
Gor’kov [13] one can obtain after some algebra the following

equation
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Near Tc the coefficient of Δ T( ) may be expanded as
−g N T T(0)(1 / )c0 , then in the uniform limit ( =A 0), the

order parameter Ψ is proportional to Δ. The final results are

ψ Δ ζ
π

= n

T

7 (3)

8
, (13)

c
2 2

α π
ζ

= − −
⎛
⎝⎜

⎞
⎠⎟

T

E

T

T

6

7 (3)
1 , (14)c

F c

2 2

β π
ζ

= −
( )k T

E n

12

7 (3)
, (15)

B c

F

2 2

n is the electron density. Here we presented the order
parameter Ψ proportional to the energy gap Δ of the BCS
theory and the coefficients α and β of GL theory in terms of
physical parameters Tc, EF and n. In view of these results the
GL theory is almost complete in a limited sense, which is
correct near Tc. We are reminded that Ψ τ~ 1/2, where
τ = −( )T T1 / c . Here we have a clear understanding that the
GL theory is just not phenomenological, rather it has a
microscopic basis as discussed above.

Before we proceed further we give an outline of the rest
of the paper. Novel superconductors, particularly the multi-
band (gap) ones are covered in section 2. We present GL
theory, BCS theory and GL theory derivable from the BCS. In
section 3 we discuss further expansion as mentioned above to
include higher power of τ +n(2 1)/2 ( ⩾n 1) and their interesting
consequences. We present some selected results on the gaps
(both single and multiband materials) from our published
calculations. In section 4 we discuss some current activity in
nano-superconductors based on both BCS and GL theories.
There have been many interesting reports on the novelty of
nano-superconductors. This is a new area that is coming up
vigorously. We present a balanced review of what confine-
ment does to the smallness of nano-superconductors. Section 5
gives a brief summary and conclusions.

2. Multiband superconductors

The electronic structure of real materials is much more
complicated in comparison to the simple jellium model that
was adopted in the original BCS theory. If we examine the
band structure of superconducting materials, in most of them
the Fermi energy passes through many bands and hence the
Fermi surfaces are multi-sheeted with the same or different
energy gap amplitudes. Evidence of two energy gaps are even
obtained in high purity elemental superconductors, for
example Nb, Ta and V [15], Nb doped SrTiO3 [16]. More
recently, multiband superconductivity involving 2 to 5 bands
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with more complicated Fermi surfaces are observed in a
variety of novel superconductors, such as MgB2 [17–19],
RNi2B2C (R=Lu, Y) [20] and FeAs family of super-
conductors [21]. A variety of experiments are reported,
namely magnetisation, transport, specific heat, penetration
depth, tunnelling, photo-electron spectroscopy, small angle
neutron scattering etc, where multiple gaps are easily inferred.

Soon after the BCS theory appeared, Suhl et al [22] and
Moskalenko [23] independently extended the one band BCS
theory to two bands with overlapping energy bands at the
Fermi surface. The two band theory was further discussed by
Kondo [24], where the solutions are obtained by using
Bogolyubov’s variational method. Tilley [25] obtained these
results by using Gor’kov’s Green function technique. Addi-
tionally, Tilley derived GL equations for the two band case
from the BCS method following the one band equivalence as
mentioned above due to Gor’kov. The two-band model has
been explored intensely starting with the work of Geilikman
et al [26]. Many other authors used this model in the context
of high Tc oxides [27] and MgB2 [28–32]. Brandt and Das
[33] have presented a comprehensive review of the latter
topic.

2.1. Multiband GL theory

Multiband GL theory can be seen as a straight forward gen-
eralisation of the standard GL theory. The free energy density
can be expanded as powers of multi-order parameters
[34, 35]. Here one has total superconducting free energy
composed of individual parts and mutual interaction terms
arising out of various order parameters and gradient terms.
Here we consider the case of two order parameters. Gen-
eralization to multi-order parameters is a straight forward
case. The simplest inter-order parameter coupling is the
internal Josephson coupling term that we consider below. The
free energy density is written as

∑ α Ψ
β
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ħ Ψ

Γ Ψ Ψ Ψ Ψ
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Here the last but one term is the Josephson coupling
term, with interaction strength Γ . Let us consider the applied
field is zero and we are in the bulk at the temperature T close

to Tc. By neglecting the Ψj
4

term, the free energy density
(with reference to normal state) is given by

α Ψ α Ψ Γ Ψ Ψ Δϕ= + −f 2 cos( ), (17)1 1
2

2 2
2

1 2

where Δϕ is the phase difference between two condensates.
When Γ = 0 two bands are fully decoupled and two

order parameters have two critical temperatures. For Γ > 0
the free energy is minimized with Δϕ = 0. For Γ < 0 the free
energy is stable with Δϕ π= . This implies the condensation

energy for two-band superconductivity is more stable than the
two independent states. More on two-band nanosystems in
section 4.f.i.

The GL equations for Ψi are obtained from the mini-
mization of the free energy and similarly the equation for the
current. The self-consistent solutions of these ( +i 1)
equations describe the properties of multiband super-
conductors within the traditional GL theory (see [27–35]).

In the recent past it has been argued [28, 36–40] that the
original GL theory is incomplete beyond the order parameter
Ψ τ∼i

1/2. Therefore, one has to incorporate the higher order
terms (τ +n(2 1)/2 for ⩾n 1) as a systematic expansion, see
Fetter and Walecka [41]. For the derivation of this result one
has to expand the order parameter equation in powers of Ψ
and its spatial gradients. Details of this theory are in our
recent paper [40].

2.2. Multiband BCS theory

One band theory is generalised to a multiband [22, 23]
situation. For simplicity we consider a two-band case. Mul-
tiband generalization is straightforward

∑ ∑ξ
Ω

= +
σ

σ σ
′

↑ − ↓ − ′↓ ′↑H c c g c c c c
1

, (18)
i

i i i

ij
ij i i j j

k

k k k

kk
k k k k

† † †

here i j, stand for the band indices 1, 2. gij is the intra- and
interband couplings, and Ω is the volume.

Using the same variational principle as in the one-band
case, the gap equation is

∑Δ
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Δ
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tanh
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, (19)i
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k

where ξ Δ= +E j jk k k
2 2 .

Explicitly, two gaps are given by

Δ Δ Δ= +A g Ag (20)1 11 1 1 12 2 2,

Δ Δ Δ= +A g Ag , (21)2 21 1 1 22 2 2
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gij are interaction matrix involving diagonal gii and off-diag-
onal gij parameters related to bands i and j. The equation for
Tc as largest Δ → 0, ω Λ=T 1.13 exp(1/ )c D , where Λ is the
largest eigenvalue of λ = g N (0)ij ij j

Λ λ λ λ λ λ λ= + + − +
⎡
⎣⎢

⎤
⎦⎥( )1

2
4 . (23)11 22 11 22

2
12 21

Tc of the two band system is enhanced by the second term
of the equation below

λ λ
λ λ λ

λ≈ +
−

+
⎡
⎣
⎢⎢

⎤
⎦
⎥⎥( )( )

TT 1 O . (24)cc 1
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T c1 is the critical temperature for band 1.
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2.3. GL derived from BCS

As we have done in the one-band case (uniform without
gradient and =A 0), we follow the similar procedure in the
two-band case. Self-consistency condition through third order
in Δi gives the same equation as in the one-band case. Near Tc

the coefficient of Δ T( )i may be expanded to lowest order in τ .
Now by comparing the first GL equation, the values of αi and
βi can be obtained. Ψi is proportional to Δi. Results are [40]
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= − +
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−
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e
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B c

3. Beyond the standard GL theory

This is an important development in recent works on the GL
theory. It is an extended version beyond the traditional GL
theory [2]. Traditional GLT includes terms beyond Ψ τ∝ 1/2

which are incomplete. One is inclined to extend it to complete
the terms τ∝ 3/2 as done in [37–40] by which one improves
the gap and other properties to lower temperatures. To
accomplish the extended theory Ψ τ∝ 3/2 and beyond, one
follows Gor’kov (see also Fetter and Walecka [41]) by
expanding the self-consistent gap equation in powers of the
order parameter and its spatial gradients to high orders.
Depending on the desired precision the expansion terminates
at some order. Details of this theory can be found in [40]. We
present here some results.

In figure 1(a) the energy gap Δ T/ c1 for one-band super-
conductor is shown as a function of temperature T in the BCS
and GL theory. The black dots are BCS results. The solid red
line overshoots the BCS in the traditional GL theory, which
refers to τ1/2 in the expansion τ +n(2 1)/2 terms, which means

=n 0. For ⩾n 1 are shown as higher order corrections in the
extended GL. The inset is a close-up of the region near τ = 1.
It is clear that the traditional GL result is unreliable away from
Tc. In figure 1(b) the magnitude of individual terms is shown
on a Log plot. More in the figure caption. (reference [40]).

Now we discuss the two-band situation. Firstly, we plot
the BCS solution for both the gaps with a range of values of
inter-band couplings gij. The values of gij chosen are 0.001,
0.01, 0.1 and 0.55. Other parameters are in the figure cap-
tion. In figure 2(a) the energy gap for the first band is shown
as a function of τ= −T T/ 1c , where the inter-band cou-
pling has a weak effect on the first gap. Nothing spectacular
is seen in the first gap results. In (b) the second gap is
shown for the same couplings and their effect is drastic for

weaker coupling. For =g 0ij the second critical temperature
T c2 is ~0.33 in the scale of T T/ c. The second gap →0 at this
T c2 . As the couplings increase the second band has induced
superconductivity from the first band and it results in the
plots shown. At higher couplings the plot is reminiscent of a
one-band BCS result.

In figures 2(c) and (d) we show order parameters 1 and 2
calculated by using the extended GL formalism using the
same parameters. For τ− ⩾1 0.3 the behaviour of the GL
plots is similar to that of BCS. However, for τ− ⩽1 0.3 the
behaviour of the order parameters is drastically different in
comparison to BCS in (a) and (b), respectively. The point
where the plots begin to disagree is close to the location of
T T~ 0.33c c2 . Komendova et al [42] have argued that there is a
possibility of hidden criticality near T c2 , which becomes cri-
tical in the limit of vanishing inter-band coupling. This feature
is likely to be associated with the anomalous behaviour of the
gap near this T c2 . Although the BCS solution of the first band
showed only a weak perturbation with the inter-band cou-
pling, the nonconvergent behaviour seen in the GL solution of
the second band affects the dominant band drastically at lower
temperature.

Now we consider a range of real materials FeSe0.94 [43],
OsB2 [44], LiFeAs[45] and MgB2 [46]. The parameters used
for these calculations are representative of the behaviour of
the materials, though the exact choice is not claimed to be
unique. For each set of parameters we plot the BCS and

Figure 1. (a) The extended GL expansion is compared to a numerical
full BCS result. The extended GL converges to the true solution in
the region τ < 1 and for moderate τ it converges quickly to that of
the BCS. Inset: a close up of the region near τ = 1. There are
singularities in the BCS function infinitesimally close to τ = 1,
which prevent extended GL from converging at this point. (b) The
magnitude of individual terms in the extended GL expansion are
shown on a Log plot. The magnitude of higher terms decays quickly
except near the point τ = 1, where it remains finite. It shows the
expansion is converging in the region τ < 1 (from [40]).
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extended GL gaps with the terms in the GL calculations
retained to order τ +n(2 1)/2 with =n 50. These results are
shown in figure 3. For details see [40].

Similar to two-band results we also calculate for three-
band materials using both extended GL and BCS theories
(figure 4). The legend shows the BCS by black dots and other
symbols are for extended GL with different powers of τ as
indicated before. =N (0) 0.3i for all three bands, =g 0.611 ,

=g 0.5522 , =g 0.433 , = =g g 0.112 21 and four columns are
for = = =g g g g13 23 31 32 for the values 0.001, 0.01, 0.1 and
0.5, respectively.

To summarise this part we have clearly demonstrated the
importance of τ(2n+1)/2 expansion for large n multi band
superconductors. This point emphasises the weaker validity
of the GL theory for lower temperatures for some materials

and especially for applications with small inter-band
couplings.

Now we address the next part when the material is nano
in size, yet a superconductor.

4. From bulk to nano or ‘nano in bulk’ in a
superconductor

As a definition, ‘nanoscience’ is the study of materials whose
physical size is on the nanometre scale (in the range of
1–1000 nm). While ‘nano’ means precisely small, ‘meso’ is a
broader term, being intermediate between the microscopic
(molecular) and macroscopic (bulk) scale. In practice the

Figure 2. (a) and (b) are BCS gaps for first and second bands. They are compared with high expansion ( =n 50) in the extended GL theory in
(c) and (d), respectively. The parameters used here are =g 0.611 , =g 0.522 , = =N N(0) (0) 0.31 2 and ω = 0.09D . (From [40]).

Figure 3. Extended GL calculations compared to full multiband BCS results. The materials are (a) FeSe0.94, (b) OsB2, (c) LiFeAs and (d)
MgB2.(From [40]).
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‘mesoscopic’ regime partly overlaps the ‘nanoscopic’
description [47].

For a superconductor it will not be inappropriate to argue
‘nano in bulk’ for the following reasons. We have said before
that there are two characteristic length scales in a super-
conductor, coherence length(s) ξ and penetration length λ.
Although a superconductor as described above may be a bulk
material and superconductivity is a macroscopic quantum
phenomenon, these particular and relevant length scales are
nanometric in dimension. Much of interesting physics relies
on these length scales when one studies the surfaces of bulk
superconductors or vortices of superconductors in the pre-
sence of a magnetic field. These length scales are also

meaningful for a material, whose physical size is nanometric
subject to some conditions such as parity of number of
electrons and fluctuations. In addition to these, the current
developments in experimental nanotechnology have made
nanoelectronics a very attractive subject [48, 49]. We present
here some basic issues of physics including theories and
experiments.

4.1. Kubo gap

In 1962, Kubo [50] proposed a theory for metallic particles,
which are small in size unlike the bulk. For such systems it is
only quantum mechanics that accounts for observed physical
properties. In the jargon of the field, ‘quantum confinement’

Figure 4. Extended GL and BCS results compared for three bands. (B J Wilson and M P Das unpublished).
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means that the de Broglie wavelength of the particles is
comparable to the size of the system that contains them. Small
size implies strong quantum confinement effects. Bulk
extended matter, when sufficiently curtailed in one or more of
its dimensions, will behave as a quasi-two dimensional (two-
DEG), a quasi-one dimensional (quantum wire) or a quasi-
zero dimensional (quantum dot) system. The price to be paid
for this is to lose the long-range extendedness of the wave
functions. The energy of motion becomes quantized as the
wave function is confined. Subject to confinement, the con-
tinuum of the density of states becomes discrete. However,
the energy gaps between the states are tiny, in the meV range,
if the particle size is nanometric.

Kubo recognised the inherent statistical nature of the
problem. He argued the energy spectrum depends on the
precise geometry of the system, even though the average
energy gaps may be same. Energy spectrum in many respects
leads to anomalies in the physico-chemical properties of small
metallic particles at low temperatures. In brief, the Kubo gap
depends on the spectrum. This gap ( )d D E~ 1/K F , inversely
proportional to the electronic density of states at the Fermi
level. Kubo gap is essentially the energy required to remove
an electron from the small metal particle. See earlier reviews
by Halperin [51] and von Delft and Ralph [52]. In comparison
to the thermal energy, if ⩽d TK , the material is a metal and
otherwise it is an insulator. Our further discussion is about
only metallic nanoparticles.

4.2. Anderson criterion

Following the BCS theory (meant for clean superconductors),
Anderson [53] presented a theory for dirty superconductors,
where the elastic scattering strength is large compared to the
energy gap. Independently similar results are obtained by
Abrikosov and Gor’kov [54], see also [55] for more detailed
calculations. The scattering mean free path does not change
the Gor’kov’s anomalous Green function, which is the same
as the energy gap.

Anderson’s idea emphasises that often in the presence of
some disorder, a superconducting state can be more stable and
less likely to be suppressed [56]. This loss of super-
conductivity has been explored not only in nanoparticles and
in nanowires, but also in more complex systems exhibiting
many exciting and novel effects. For a small number of
particles, as mentioned before, the allowed energy levels are
quantized, discrete and the mean energy level spacing dK (the
Kubo gap) becomes bigger for the smallness of the sample.
When the superconducting energy gap Δ approaches dK ,
superconductivity is suppressed at this point by the Ander-
son’s criterion [57]. In this limit Δ <d/ 1K , there are no
available energy levels correlated by the pairing interaction.
More precisely, it has been argued [58] that superconductivity
will vanish for dK greater than a critical value Δ=d 3.56Kc for
even N and Δ=d /4Kc for odd N . Presently Kubo-Anderson
criteria are utilised prolifically to predict superconductivity in
nanosystems [59].

Although Anderson’s criterion remained unexplored for
some time, from the mid-nineties in view of many

experimental investigations on nanoparticles, theoretical
activities began vigorously based on the BCS reduced
Hamiltonian. While the BCS theory is used for macoscopic
systems, we are reminded of the Richardson solution [60],
originally developed for finite nucleus. The latter approach is
based on the canonical ensemble, where the number of par-
ticles is fixed. This is in contrast with the BCS theory, where
grand canonical ensemble is used to deal with the macro-
scopic limit. While the BCS theory provides a mean-field
solution, Richardson’s solution is exact [61–63]. More on this
in the next sub-section.

Richardson solution depends on dK near the Fermi level
EF. The property of Cooper pairing depends on the ‘parity’ of
number of electrons N . For odd N , one electron is unpaired
and carries an additional energy Δ Δ=P . This feature is
experimentally detected [57, 64, 65] exploring the Coulomb
blocked phenomenon and theoretically analysed by Matveev
and Larkin [66].

4.3. Theories

During the past two decades there have been a lot of activities
in this area of finite size nanosuperconductors. We give here a
brief review. Most of the theoretical work reported here is
carried out with the BCS theory applied to a finite number of
particles appropriate for nanosystems. For thin films Blatt and
Thompson [66] showed the energy gap is an oscillatory as a
function of film thickness passing through resonances, where
the period of oscillation is the Fermi wavelength. The gap
increases with a decrease of the thickness. The enhancement
of superconductivity by the size effect was also discussed by
Parmenter [67]. With the decrease of size the gap increases,
where the weak coupling limit goes to the strong coupling
case (Δ T(0)/ c varies from 3.528 to 4). Thermodynamical
properties, particularly specific heat, spin susceptibility of
small grains are investigated in [68] by using both GL and
BCS theories. Since GL is unable to deal with quasi-particles,
a static approximation within the BCS was used, where
contributions due to quasi particles are incorporated
explicitly.

4.4. GL theory for nanosuperconductors

In recent years, the traditional GL theory has been applied to
meso/nanosuperconductors. As mentioned earlier, it is
important to apply the correct boundary conditions if the
superconductivity is occurring in a small volume. On the
boundary the order parameter has to vanish. On application of
a magnetic field above a certain critical field a vortex can be
created. The authors of this work [69] have applied traditional
3-dimensional GL theory in a parallelepiped cell containing a
small mesoscopic disk at the centre. Vortex state solutions are
obtained by minimising the free energy numerically by the
method of simulated annealing. See reference [69] for details
of calculations. The result has been shown in figure 5 as a
simple example. Clearly we notice the vanishing of order
parameter near the edges of the disk and at the centre where
the magnetic field has penetrated.
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By using the same traditional GL theory Peeters and co-
workers have studied mesoscopic superconductivity for vor-
tex phase diagram [70]. Free energies of different vortex
configurations are calculated by increasing both the disk
thickness and magnetic field. The authors showed a smooth
transition from a multi-vortex state to a giant vortex state
(figure 6). With increment of magnetic field with steps of 0.01
Hc2 the superconductor goes from a Meissner state to vortex
states as shown in the figure 6. This picture is reminiscent of
formation of vortices in rotating 4He superfluid and atomic
Bose–Einstein condensate [71]. In this sub-field of meso-
scopic superconductors there has been plenty of theoretical
and experimental activities. Some of the references are given

here [72]. We also point out more recently available extended
GL theory for nano/meso superconductors in the later
section 4.f.ii.

4.5. Reduced BCS Hamiltonian for nanosuperconductors

We mentioned earlier that the BCS model for bulk super-
conductor deals with grand canonical ensemble. For small
grains it is inappropriate for use due to the fluctuations in
smallness of N . This requires a treatment by canonical
ensemble (see details in [58]). In metallic condensed systems
with large N pairing occurs due to virtual exchange of pho-
nons between the conduction electrons. In atomic nucleus
with a fixed number of fermions (small N) pairing appears
due to short-range nature of nuclear interaction and it includes
contributions from the singlet-S and triplet-P channels. In
both cases the pairs are correlated in the time-reversed states.
A canonical treatment of BCS states are applied to nuclear
physics soon after the former’s appearance. In 1963
Richardson [60] provided an exact solution in a simplified
form of the BCS, for application to nuclear physics with some
more papers followed soon. Despite this, the condensed
matter community did not pay much attention until the
superconductivity in small metallic grains was reported in the
mid-nineties [57]. Currently Richardson model is an attractive
picture for nanosuperconductors.

Richardson’s reduced Hamiltonian is given by

∑ ∑ε λ= −
σ

σ σ
=

−

′=

−

↑ ↓ ′↓ ′↑H c c d c c c c . (28)
j

N

j j j

j j

N

j j j j

0,

1
†

, 0

1
† †

Here σ σ( )c cj j
† destroys (creates) electrons in free time-

reversed states σ∣j, with discrete uniformly spaced degen-
erate eigenenergies ε ε= +jdj 0. d is the (Kubo)gap of the
discrete spectrum, λ is dimensionless pairing strength. In BCS
model λ=g d . The interaction g scatters only time-reversed
electron pairs within the Debye cutoff frequency ωD of the
energy shell around the Fermi energy εF . λ is related to the
parameters bulk gap Δ and the cutoff frequency ωD via the
bulk gap equation λ ω Δ=1/ /D . In this model ω=N d2 /D .

We notice here an interesting point that the nanostructure
boundary condition is entering in a subtle way through the
discrete spectrum. Reference [62] considers finite size cor-
rections to the Richardson model, where the low energy
spectrum of the problem is included as an expansion ( N1/ ) in
the inverse of the number of electrons in the grain.

Going back to the original BCS the ground state is
written as

∑∝ ↑ ↓

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

v

u
c cBCS exp 0 , (29)

j

j

j
j j
† †

where u j and vj are variational parameters of the original BCS
theory. These two parameters are obtained as BCS solutions
from a variational minimization of the reduced Hamiltonian.

ε μ
= +

−⎛
⎝
⎜⎜

⎞
⎠
⎟⎟u

E

1

2
1 , (30)j

j

j

2

Figure 5. Density of superconducting electrons in a disk for no
vortex (Meissner state) with black filled dots and a single vortex with
unfilled dots, occurring at the centre of the disk. (See [69]).

Figure 6. Free energy configurations with vorticity L for two disks of
radius ξ=R 4 in (a) and ξ=R 4.8 in (b), ξ being the coherence
length, is shown as a function of magnetic field H scaled by the
second critical field Hc2. For >L 7 states are metastable, hence a
giant vortex is formed for large L . (See [70]).
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ε μ
= −

−⎛
⎝
⎜⎜

⎞
⎠
⎟⎟v

E

1

2
1 , (31)j

j

j

2

with the quasi-particle excitation energy given by

ε Δ= + ⎤⎦E j j
2 2 . Δ is the energy gap that we have dis-

cussed earlier. In the grand canonical ensemble this BCS
ground state is asymptotically exact for → ∞N . For finite N
it requires a canonical ensemble, for which a projected BCS
(PBCS) ansatz is used, which is given by

∑∝ ↑ ↓

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

v

u
c cPBCS 0. (32)

j

j

j
j j

N

† †

It is an ‘N conserving theory’ [61]. Apart from BCS and
PBCS ansatz, there are other numerical approaches, namely
Lanzcos method [74], perturbative renormalization group
method [65] and density matrix renormalization group tech-
nique [58]. These methods have been extensively used for
nanosuperconductivity. See reviews [52, 73].

For the novel physics for finite N, we have size, shape
and shell effects, effects of fluctuations and odd–even parity
[75–79]. Randomness of eigenvalue distributions raises new
question of statistics of ensembles in the Dyson–Wigner
sense. These features are in the presence of pairing correla-
tions unlike in single-particle physics of disordered systems
[80]. Thermodynamic properties of small superconducting
grains are studied in detail in [81] by analytical and numerical
methods. Here the authors have studied in the limit of d/Δ> 1
and the crossover of superconducting to normal grains.

An interesting point of all this important work is to
emphasise how a crossover of bulk to a nanosystem is

possible. Although Anderson’s criterion has been in the lit-
erature for over five decades, the ground breaking experi-
ments of Tinkham and co-workers [57] brought new light on
ultra-thin nanosuperconductivity. Without going through
details, a list (incomplete) gives an idea of experimental
activities [59].

On the other hand, by using the BCS theory appropriate
for nanosystems, namely Richardson model, it opened a new
panorama in this novel area of superconductivity.

A illustrations we present here some results of calcula-
tions. In figure 7 (upper panel) calculations of condensation
energy given by the difference of ground state energy of the
pairing Hamiltonian and the energy of the filled Fermi state,

= −E E FS H FSb
c

b
GS

BCS . The condensation energy is
scaled by the bulk superconducting gap. They are shown for
even (b= 0) and odd (b= 1) parity state in the PBCS and exact
calculations. The parity effect in terms of the gap parameter is
given by the difference of ground state energy of an odd grain
and the mean energy of the neighbouring even grains by
adding or removing an electron. This gives the Matveev–
Larkin (ML) gap by the expression [65]
Δ = − + + −⎡⎣ ⎤⎦E N E N E N( ) 1/2 ( 1) ( 1)ML 1 0 0 . The lower
panel of figure 7 gives the ML gap scaled to the bulk gap as a
function of grain size by the PBCS (dashed line) and exact
(continuous line) methods. One can see the asymptotic limits
of both PBCS and exact results. It is also interesting to note
that the Anderson’s criterion Δd / ~ 1 is satisfied. For details
see [73].

Fluctuation effects are calculated in [62]. Figure 8 shows
the condensation energies for even and odd N both for uni-
formly spaced and randomly spaced levels (discussions in
[62, 80 and 73]).

4.6. Nano superconductivity in multiband systems

Earlier, in section 2, we have discussed multiband theories in
the BCS and GL models. Particularly, two-band systems were
analysed in some detail. From the material perspective Nb, Ta
and V are the elemental metals which have two-band super-
conductivity [15]. Superconducting studies have been made
in Nb-doped SrTiO3 in bulk [16]. After the discovery of two-

Figure 7. Upper panel shows condensation energy for ( =b 0) and
odd ( =b 1) grains calculated using PBCS and exact wave functions
as a function of grain size. The lower panel gives the Matveev–
Larkin gap in PBCS and exact calculations (from [73]).

Figure 8. Even and odd condensation energies are shown for uniform
equally spaced level (dashed line) and ensemble-averaged energies
for randomly spaced level (solid line). Vertical bars show
fluctuations from [62] reported in [73].
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band superconductivity in MgB2 [82] and Fe pnictides [83],
important work continued to be done in multiband materials
(see these two reviews [84, 85]).

In the area of nanosuperconductivity a number of studies
have been reported. Quantum size effect (QSE) modulated
superconductivity has been observed in nanograins of Pb on
Si [86]. QSE has been studied in Pb, In and V [87–89], where
nanosuperconductivity seems to obey the Anderson criterion.
Authors of [90] have investigated size dependent Tc, coher-
ence length, upper critical field Hc2, and irreversible field Hirr ,
in Nb. Reduction of the gap in ultra-thin films of Pb on Si by
variation of thickness is reported in [91]. Magnetization in Pb
nanoparticles has been studied in the range of 4–1000 nm
[92]. The Meissner effect is clearly seen for particle sizes
>30 nm, consistent with the Anderson criterion. Multilayer
ultra-thin Pb films (5–15 monolayers) are the subject of a
study of scanning tunnelling spectroscopy [93], where layer
dependent superconducting gap and Tc are reported. Super-
lattices of artificially engineered pnictide superconductors are
fabricated for new interfacial phenomena and many device
applications [94].

While experimental progress on multiband super-
conductivity is heading forward, there are some develop-
ments on the theoretical front. The possibility of
superconductivity in doped SrTiO3 in films and interfaces is
reported [95] by using a two-dimensional two-band model.
Shape resonances and shell effects are investigated for
multiband superconductors in thin film form [96]. In this
work the one-band model of Blatt and Thompson [66] has
been extended for two band superconductors relevant to
MgB2 systems. From this work we show in figure 9 the
calculated T T/ (Bulk)c c value as the film thickness varies. The
implication of this calculation is that the pattern of the shape
resonances is more regular as the offset πe0 decreases. (Note,
this offset is between the two σ and π bands.) In the one-
band limit the shape resonances (blue colour) have larger
amplitudes compared to the two-band case (black colour).
Therefore, the size effect is suppressed by the multiband
structure. For details see [96].

4.7. Multiband nano superconductivity by BCS-Richardson
model

In a long paper, Kruchinin and Nagao (KN) [97] considered a
two-band superconductivity model (for MgB2) by extending
Richardson’s exact model. We describe this approach in some
detail. They considered the two-band Hamiltonian as in the
bulk for the nanograin.

∑ ∑ξ
Ω

= +
σ

σ σ
′

↑ − ↓ − ′↓ ′↑H c c g c c c c
1

. (33)
i

i i i

ij
ij i i j j

k

k k k

kk
k k k k

† † †

Unlike in the bulk, ks are now discrete state indices, js—
band indices. g is the interaction matrix with attraction for the
intra-band ( <g 0ii ) and repulsion ( >g 0ij ) for the inter-band
couplings. Since the states are discrete, the sums in the
Hamiltonian are over the set I of N I1 states corresponding to
band 1 with fixed width ω2 D1 and the set J of N J2 states for
band 2, respectively. For simplicity one can assume Debye
energies ω D1 and ω D2 are the same and equal to ωD. Then

ρ ρ=N N/ /I I1 2 1 2, where ρ1 and ρ2 are density of states for
respective bands. As in the Richardson’s model the interac-
tion energies are λ=g d11 1 11 and λ=g d22 2 22, ω=d N2 /D I1 1

and ω=d N2 D I2 2 . The last two are the mean energy level
spacings. λ1 and λ2 are dimensionless parameters for two sub-
bands. The inter-band coupling is written as λ=g d d12 12 1 2

The ratio ρ ρ = d d/ /1 2 2 1.
KN [98] employed the functional integral approach,

commonly used in the problems of pairing correlations of a
finite number of fermions [99, 100] With this technique the
coupled gap equations at =T 0 are obtained (for bulk) as
Δ ω η= ( )/ sinh 1/i D i with =i 1,2.

λ α η η λ
λ λ λη

=
+

−
±1 [ , ]

, (34)
1

22 1 2 12

11 22 12
2

λ α η η λ
λ λ λη

=
+

−
±
−

1 [ , ]
. (35)

2

11
1

1 2 12

11 22 12
2

The phase of the gap is
α η η η η= ±± ( ) ( )[ , ] sinh 1/ /sinh 1/1 2 2 1 . Here there are two
cases, (i) the phases can be same and (ii) the phases are
opposite. When the inter-band coupling λ12 is large,
Δ Δ= −1 2 and for λ = 012 , bulk gaps are independent two
gaps. These results we have obtained earlier by the GL
method (section 2.2) for the bulk two-band superconductivity.
KN calculates the condensate energy Ec for the two-band
nanosuperconductor. As conventionally defined it is the dif-
ference of ground state energies of normal and super-
conducting states including the interaction term. The final
expression for the total condensation energy Ec is given by

λ λ Δ

Δ Δ λ λ λ

= + −
×

( ) ( )
( )

E E N E N E

d d

, ,

, , , , , , , (36)

c c 1 11 c 2 22 c

1 2 1 2 11 22 12

where the first two terms on the right hand side are con-
densation energy of two independent sub-systems and the last

Figure 9. Tc/Tc(Bulk for MgB2 = 38 K) as a function of film
thickness in nm for one-band (in blue colour) and two-band (black
colour) limits. (See [96]).
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term is the contribution of inter-band contribution given by

λ
λ λ λ

Δ
λ

Δ
λ

Δ Δ Δ Δ

λ

Δ =
−

+

+
+

⎡
⎣⎢

⎤

⎦
⎥⎥

( )

E
d d

d d

2
. (37)
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1 11

2
2

2 22

1
* 2 1 2
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12 1 2

The quantity ΔEc increases or decreases depending on
the value of the phase difference.
Δ Δ Δ Δ Δ Δ Δϕ+ =( ) ( )2 cos( )1

*
2 1 2

*
1 2 . If its value is >0, it

leads to an instability, whereas its value <0, makes Ec more
stable. This we have discussed in section 2.1 under the
multiband GL theory.

Among other things KN discusses critical level spacing,
the parity gap, Kondo effect and application to quantum
computing for this model.

4.8. Multiband nano superconductivity by extended GL model

This is a new paradigm of nanofilms involving multiband
superconductors. Quantum confinement and fluctuations are
important in quasi-2D systems. Therefore, it will be alluring
to implement the extended GL method as worked out in detail
for multiband bulk system in [39, 40]. Shanenko et al [100]
have made a preliminary attempt in this realm. They have
included terms of order τ3/2 in the extended GL equation. Yet
the validity of GL equations remains τ ≪ 1.

5. Epilogue

In this review we presented a bird’s eye view of recent
advances in novel superconductors. We gave a pedagogic
brief history of superconducting phenomenon by presenting
both theories and experiments. We begin with the one-band/
gap superconductors. Phenomenological theory of GL and
microscopic theory of BCS are outlined with an important
landmark result. Gor’kov showed that the GL theory was
derived from the BCS theory, particularly its correctness near
Tc. There is a technical point that for the equivalence of both
the theories, GL theory relies on the expansion of τ1/2

(τ = − T T1 / c) in the lowest order.
In view of possible occurrence of superconductivity in s-

d band metals, multi-band generalization of GL and BCS was
done by a number of workers. An important parameter
appearing in these theories is the inter-band couplings, which
show some interesting consequences such as, time reversed
broken symmetry state, kink solutions and frustration. In the
multiband case we showed the equivalence of GL and BCS
models near the Tc. Going beyond the standard GL theory we
made expansion of the order parameter to higher order in
τ +n(2 1)/2. We showed some new results in the calculations of
the order parameter compared to the BCS values.

After having stated these background materials we dis-
cussed superconductivity going from ‘bulk to nano’. A cri-
terion predicted by Anderson that superconductivity can
survive in a small grain of material above a certain critical

size is the main issue highlighted in the later part of the paper.
In this context we discussed the BCS theory for finite size
systems, what has been studied in great detail in nuclear
physics for pairing of nucleons. An exactly solvable model
due to Richardson for finite number of particles is discussed
with many important results reviewed.

Physics being an experimental science, a large number
and variety of experiments have been done recently on
nanosuperconductivity. We have given an ample amount of
information of this development. Arising out of this necessity
of understanding the experiments, some highlights of theory
are presented. With these prospects we are hopeful that there
will be more investigations in this fast growing area.

Acknowledgments

MPD is grateful to Professor Nguyen Van Hieu for the kind
invitation and warm hospitality that is immensely enjoyable
coming to Ha Long City for the IWAMSN-2014.

References

[1] London F and London H 1935 Proc. R. Soc. A 149 71
[2] Ginzburg V L and Landau L D 1950 Zh. Eksp. Teor. Fiz. 20

1064 (English translation)
Landau L D 1965 Collected Papers of L D Landau ed

D ter Haar (Oxford: Pergamon Press) p 546
[3] Abrikosov A A 1957 Zh. Eksp. Teor. Fiz. 32 1442

Abrikosov A A 1957 Sov. Phys. JETP 5 1174 (Engl. transl.)
[4] Bardeen J and Pines D 1955 Phys. Rev. 99 1140
[5] Cooper L 1956 Phys. Rev. 104 1189
[6] Bardeen J, Cooper L and Schrieffer J R 1957 Phys. Rev.

108 1175
[7] Anderson P W 1958 Phys. Rev. 110 827
[8] Nambu Y 1960 Phys. Rev. 117 648
[9] Bogolyubov N N 1958 Sov. Phys. JETP 7 41
[10] Valatin J 1958 Il Nuovo Cimento VII 843
[11] Gor’kov L P 1958 Sov. Phys. JETP 7 505
[12] Abrikosov A A, Gor’kov L P and Dzyaloshinski I E 1963

Methods of Quantum Field Theory in Statistical Physics
(Englewood Cliffs, NJ: Prentice Hall) chapter 7

[13] Gor’kov L P 1959 Sov. Phys. JETP 9 1364
[14] Ketterson J B and Song S N 1999 Superconductivity

(Cambridge: Cambridge University Press)
[15] Shen L Y L, Senozan N M and Phillips N E 1965 Phys. Rev.

Lett. 14 1025
[16] Binnig G, Baratoff A, Hoenig H E and Bednorz J G 1980

Phys. Rev. Lett. 45 1352
[17] Ivarone M, Karapetrov G, Koshelev A, Kwok E W K,

Crabtree G W, Hinks D G, Kang W N, Choi E-M,
Kim H J and Lee S I 2002 Phys. Rev. Lett. 89 187002

[18] Eskildsen M R, Kugler M, Tanaka S, Jun J, Kazakov S M,
Karpinski J and Fischer Ø 2002 Phys. Rev. Lett. 89 187003

[19] Xi X X 2008 Rep. Prog. Phys. 71 116501
[20] Shulga S V, Drechsler S-L, Fuchs G, Müller K-H, Winzer W,

Heinecke M and Krug K 1998 Phys. Rev. Lett. 80 1730
[21] Zehetmayer M 2013 Supercond. Sci. Technol. 26 043991
[22] Suhl H, Matthias B T and Walker L R 1959 Phys. Rev. Lett.

3 552
[23] Moskalenko V A 1959 Fiz. Metal. Metalloved. 8 503
[24] Kondo J 1963 Prog. Theor. Phys. 29 1
[25] Tilley D R 1964 Proc. Phys. Soc. 84 573

12

Adv. Nat. Sci.: Nanosci. Nanotechnol. 6 (2015) 013001 M P Das and B J Wilson

http://dx.doi.org/10.1098/rspa.1935.0048
http://dx.doi.org/10.1103/PhysRev.99.1140
http://dx.doi.org/10.1103/PhysRev.104.1189
http://dx.doi.org/10.1103/PhysRev.108.1175
http://dx.doi.org/10.1103/PhysRev.110.827
http://dx.doi.org/10.1103/PhysRev.117.648
http://dx.doi.org/10.1007/BF02745589
http://dx.doi.org/10.1103/PhysRevLett.14.1025
http://dx.doi.org/10.1103/PhysRevLett.45.1352
http://dx.doi.org/10.1103/PhysRevLett.89.187002
http://dx.doi.org/10.1103/PhysRevLett.89.187003
http://dx.doi.org/10.1088/0034-4885/71/11/116501
http://dx.doi.org/10.1103/PhysRevLett.80.1730
http://dx.doi.org/10.1088/0953-2048/26/4/043001
http://dx.doi.org/10.1103/PhysRevLett.3.552
http://dx.doi.org/10.1143/PTP.29.1
http://dx.doi.org/10.1088/0370-1328/84/4/313


[26] Geilikman B T, Zaitsev R O and Kresin V Z 1967 Sov. Phys-
Solid State 9 642

[27] Lee D H and Ihm J 1987 Solid State Commun. 62 811
[28] Zhitomirsky M E and Dao V-H 2004 Phys. Rev. B 69

054508
[29] Golubov A A and Koshelev A E 2003 Phys. Rev. B 68

104503
[30] Mazin I I and Schmalian J 1995 Physica C 469 614
[31] Kogan V G, Martin C and Prozorov R 2009 Phys. Rev. B 80

014507
[32] Gurevich A 2003 Phys. Rev. B 67 184515
[33] Brandt E H and Das M P 2011 J. Supercond. Novel Magn.

24 57
[34] Das M P, He H-X and Choy T C 1988 Inter. J. Mod. Phys. B

2 1513
[35] Askerzade I N 2006 Physics: Uspekhi 49 1003
[36] Kogan V G and Schmalian J 2011 Phys. Rev. B 83 054515
[37] Shanenko A A, Milesevic M V, Peeters F M and Vagov A V

2011 Phys. Rev. Lett. 106 047005
[38] Vagov A V, Shanenko A A, Milesevic M V, Axt V M and

Peeters F 2012 Phys. Rev. B 85 014502
[39] Vagov A V, Shanenko A A, Milesevic M V, Axt V M and

Peeters F 2012 Phys. Rev. B 86 144514
[40] Wilson B J and Das M P 2014 J. Phys.: Condens. Matter 26

325701
[41] Fetter A L and Walecka J D 1971 Quantum Theory of Many-

Particle Systems (New York: McGraw Hill)
[42] Komendova L, Chen Y, Shanenko A A, Milesovich M V and

Peeters F M 2001 Phys. Rev. Lett. 108 207002
[43] Khasanov R, Bendele M, Amato A, Konder K, Keller H,

Klaus H-H, Luetkens H and Pomjakushina E 2010 Phys.
Rev. Lett. 104 087004

[44] Singh Y, Martin C, Budko S L, Ellen A, Prozorov R and
Johnston D C 2010 Phys. Rev. B 82 144532

[45] Kim H, Tanatar M A, Song Y J, Kwon Y S and Prozorov R
2011 Phys. Rev B 83 100502

[46] Golubov A A, Kortus J, Dologov O V, Jepson O, Kong Y,
Anderson O K, Gibson B J, Anh K and Kremer R K 2002 J.
Phys.: Condens. Matter 14 1353

[47] Das M P 2010 Adv. Nat. Sci.: Nanosci. Nanotechnol. 1
043001

[48] Moshchalkov V, Woedenweber R and Lang W (ed) 2010
Nanoscience and Engineering in Superconductivity (Berlin:
Springer)

Morelle M, Chibotaru L F, Ceulemans A, Carballeira C and
Moshchalkov V V 2005 Proc. SPIE Strongly Correlated
Electron Materials: Physics and Nanoengineering ed
I Bozovic and D Pavuna 59321B

[49] Bonca J and Kruchinin S (ed) 2010 Physical Properties of
Nanosystems (NATO Science for Peace and Security Series
B) (Berlin: Springer)

[50] Kubo R 1962 J Phys. Soc. Jap. 17 975
[51] Halperin W P 1986 Rev. Mod. Phys. 58 533
[52] von Delft J and Ralph D C 2001 Phys. Rep. 345 61
[53] Anderson P W 1959 J Phys. Chem. Solids 11 26
[54] Abrikosov A A and Gor’kov L P 1958 JETP 35 1558

Abrikosov A A and Gor’kov L P 1960 JETP 39 1781
[55] Tsuneto T 1962 Prog. Theo. Phys. 28 857
[56] Ma M and Lee P A 1985 Phys. Rev. B 32 5658

Altschuler E L and Lades M 1999 arXiv:cond-mat/9901257
[57] Ralph D C, Black C T and Tinkham M 1995 Phys. Rev. Lett.

74 3241
Black C T, Ralph D C and Tinkham M 1996 Phys. Rev. Lett.

76 688
Ralph D C, Black C T and Tinkham M 1997 Phys. Rev. Lett.

78 4087
[58] Dukelsky J and Sierra G 2000 Phys. Rev. B 61 12302
[59] Yang C-C, Huang W-L, Lin Y-H, Weng C-Y, Mo Z-Y and

Chen Y-Y 2011 IEEE Trans. Magnetics 47 3535

Bose S, Raychaudhuri P, Banerji R and Ayyub P 2006 Phys.
Rev. B 74 224502

Li W H, Yang C C, Tsao F C and Lee K C 2003 Phys. Rev. B
68 184507

Li W H, Yang C C, Tsao F C, Wu S Y, Huang P J,
Chung M K and Yao Y D 2005 Phys. Rev. B 72 214516

Guo Y et al 2004 Science 306 1915
[60] Richardson R W 1963 Phys. Lett. 3 277
[61] Braun F and von Delft J 1998 Phys. Rev. Lett. 81 4712
[62] Yuzbashyan E A, Baytin A A and Altshuler B L 2005 Phys.

Rev. B 71 094505
[63] Pogosov W V, Lin N and Misko V R 2013 Eur. Phys. J. B

86 235
[64] Tuominen M T, Hergenrother J M, Tighe T S and Tinkham M

1992 Phys. Rev. Lett. 69 1997
[65] Matveev K A and Larkin A I 1997 Phys. Rev. Lett.

78 3749
[66] Blatt J M and Thomson C J 1963 Phys. Lev. Lett. 10 332
[67] Parmenter R 1968 Phys. Rev. 166 392
[68] Mühlschlegel B, Scalapino D G and Denten R 1972 Phys.

Rev. B 6 1767
[69] Romaguerra A R de C, Doria M M and Peeters F M 2007

Physica C 460–462 1232
[70] Schweigert V A, Peeters F M and Deo P S 1998 Phys. Rev.

Lett. 81 2783
[71] Tsubota M 2006 J. Phys.: Conf. Ser. 31 88
[72] Grigorieva I V, Escoffier E, Richardson J, Vinnikov L Y,

Dubonos S and Oboznov V 2006 Phys. Rev. Lett. 96
077005

Grigorieva I V, Escoffier E, Misko V R, Baelus B J,
Peeters F M, Vinnikov L Y and Dubonos S V 2007 Phys.
Rev. Lett. 99 14703

Budzin A I and Brosn J P 1998 Phys. Lett. A 196 267
Palacios J J 1998 Phys. Rev. B 58 R5948
Baelus B J, Cabral L R E and Peeters F M 2004 Phys. Rev. B

69 064506
Fink H J and Presson A G 1966 Phys. Rev. 151 219
Moshchalkov V V, Qui X G and Bruyndoncx V 1997 Phys.

Rev. B 55 11793
Kanda A, Baelus B J, Shimizu N, Tadano K, Peeters F M,

Kadpwaki K and Ootuka Y 2006 Physica C 445–448 253
Moshchalkov V V, Gielen L, Strunk C, Jonckheere R, Qiu X,

Van Haesendonck C and Bruynseraede Y 1995 Nature
373 319

[73] Dukelsky J, Pittel S and Sierra G 2004 Rev. Mod. Phys.
76 643

[74] Mastellone A, Falci G and Fazio R 1998 Phys. Lev. Lett.
80 4542

[75] Garcia-Garcia A M, Urbina J D, Yuzbashiyan E A,
Richter K and Alschuler B L 2011 Phys. Rev. 83 014510

[76] Romero-Bermudez A and Garcia-Garcia A M 2014 Phys.
Rev. 89 024510

[77] Gladilin V N, Fomin V M and Devreese J T 2002 Solid State
Commun. 121 519

[78] Krezin V and Ovchinnikov Y N 2006 Phys. Rev. 74
024514

[79] Smith R A and Ambegaokar V 1996 Phys. Rev. Lett.
77 4962

[80] Sierra G, Dukelsky J, Dussel G G, von Delft J and Braun F
2000 Phys. Rev. B 61 R11890

[81] Schechter M, Imry Y, Levinson Y and von Delft J 2001 Phys.
Rev. B 63 214518

[82] Nagamatsu J, Nakagawa N, Muranaka T, Zenitani Y and
Akimitsu J 2001 Nature 410 63

[83] Kamihara Y, Watanabe T, Hirano M and Hosono H 2008 Am
J. Chem. Soc. 130 3296

[84] Xi X X 2008 Rep. Prog. Phys. 71 116501
[85] Zehetmeyer M 2013 Supercond. Sci. Technol. 26 043001
[86] Guo Y et al 2004 Science 306 1915

13

Adv. Nat. Sci.: Nanosci. Nanotechnol. 6 (2015) 013001 M P Das and B J Wilson

http://dx.doi.org/10.1016/0038-1098(87)90825-8
http://dx.doi.org/10.1103/PhysRevB.69.054508
http://dx.doi.org/10.1103/PhysRevB.69.054508
http://dx.doi.org/10.1103/PhysRevB.68.104503
http://dx.doi.org/10.1103/PhysRevB.68.104503
http://dx.doi.org/10.1016/j.physc.2009.03.019
http://dx.doi.org/10.1103/PhysRevB.80.014507
http://dx.doi.org/10.1103/PhysRevB.80.014507
http://dx.doi.org/10.1103/PhysRevB.67.184515
http://dx.doi.org/10.1007/s10948-010-1046-8
http://dx.doi.org/10.1142/S0217979288001347
http://dx.doi.org/10.1070/PU2006v049n10ABEH006055
http://dx.doi.org/10.1103/physrevb.83.054515
http://dx.doi.org/10.1103/PhysRevLett.106.047005
http://dx.doi.org/10.1103/PhysRevB.85.014502
http://dx.doi.org/10.1103/PhysRevB.86.144514
http://dx.doi.org/10.1088/0953-8984/26/32/325701
http://dx.doi.org/10.1088/0953-8984/26/32/325701
http://dx.doi.org/10.1103/PhysRevLett.108.207002
http://dx.doi.org/10.1103/PhysRevLett.104.087004
http://dx.doi.org/10.1103/PhysRevB.82.144532
http://dx.doi.org/10.1103/PhysRevB.83.100502
http://dx.doi.org/10.1088/0953-8784/14/6/320
http://dx.doi.org/10.1088/2043-6262/1/4/043001
http://dx.doi.org/10.1088/2043-6262/1/4/043001
http://dx.doi.org/10.1117/12.623044
http://dx.doi.org/10.1143/JPSJ.17.975
http://dx.doi.org/10.1103/RevModPhys.58.533
http://dx.doi.org/10.1016/S0370-1573(00)00099-5
http://dx.doi.org/10.1016/0022-3697(59)90036-8
http://dx.doi.org/10.1143/PTP.28.857
http://dx.doi.org/10.1103/PhysRevB.32.5658
http://arxiv.org/abs/cond-mat/9901257
http://dx.doi.org/10.1103/PhysRevLett.74.3241
http://dx.doi.org/10.1103/PhysRevLett.76.688
http://dx.doi.org/10.1103/PhysRevLett.78.4087
http://dx.doi.org/10.1103/PhysRevB.61.12302
http://dx.doi.org/10.1109/TMAG.2011.2146762
http://dx.doi.org/10.1103/PhysRevB.74.224502
http://dx.doi.org/10.1103/PhysRevB.68.184507
http://dx.doi.org/10.1103/PhysRevB.72.214516
http://dx.doi.org/10.1126/science.1105130
http://dx.doi.org/10.1016/0031-9163(63)90259-2
http://dx.doi.org/10.1103/PhysRevLett.81.4712
http://dx.doi.org/10.1103/PhysRevB.71.094505
http://dx.doi.org/10.1140/epjb/e2013-40234-9
http://dx.doi.org/10.1103/PhysRevLett.69.1997
http://dx.doi.org/10.1103/PhysRevLett.78.3749
http://dx.doi.org/10.1103/PhysRevLett.10.332
http://dx.doi.org/10.1103/PhysRev.166.392
http://dx.doi.org/10.1103/PhysRevB.6.1767
http://dx.doi.org/10.1016/j.physc.2007.04.178
http://dx.doi.org/10.1016/j.physc.2007.04.178
http://dx.doi.org/10.1016/j.physc.2007.04.178
http://dx.doi.org/10.1103/PhysRevLett.81.2783
http://dx.doi.org/10.1088/1742-6596/31/1/014
http://dx.doi.org/10.1103/PhysRevLett.96.077005
http://dx.doi.org/10.1103/PhysRevLett.96.077005
http://dx.doi.org/10.1103/PhysRevLett.99.147003
http://dx.doi.org/10.1103/PhysRevB.58.R5948
http://dx.doi.org/10.1103/PhysRevB.58.R5948
http://dx.doi.org/10.1103/PhysRevB.69.064506
http://dx.doi.org/10.1103/PhysRev.151.219
http://dx.doi.org/10.1103/PhysRevB.55.11793
http://dx.doi.org/10.1016/j.physc.2006.04.010
http://dx.doi.org/10.1016/j.physc.2006.04.010
http://dx.doi.org/10.1016/j.physc.2006.04.010
http://dx.doi.org/10.1038/373319a0
http://dx.doi.org/10.1103/RevModPhys.76.643
http://dx.doi.org/10.1103/PhysRevLett.80.4542
http://dx.doi.org/10.1103/PhysRevB.83.014510
http://dx.doi.org/10.1103/PhysRevB.89.024510
http://dx.doi.org/10.1016/S0038-1098(01)00512-9
http://dx.doi.org/10.1103/PhysRevB.74.024514
http://dx.doi.org/10.1103/PhysRevB.74.024514
http://dx.doi.org/10.1103/PhysRevLett.77.4962
http://dx.doi.org/10.1103/PhysRevB.61.R11890
http://dx.doi.org/10.1103/PhysRevB.63.214518
http://dx.doi.org/10.1038/35065039
http://dx.doi.org/10.1021/ja800073m
http://dx.doi.org/10.1088/0034-4885/71/11/116501
http://dx.doi.org/10.1088/0953-2048/26/4/043001
http://dx.doi.org/10.1126/science.1105130


[87] Li W H, Yang C C, Tsao F C and Lee K C 2003 Phys. Rev. B
68 184507

[88] Li W H, Yang C C, Tsao F C, Wu S Y, Huang P J,
Chung M K and Yao Y D 2005 Phys. Rev. B 72
214516

[89] Yang C-C, Huang W-L, Lin Y-H, Weng C-Y, Mo Z-Y and
Chen Y-Y 2011 IEEE Trans. Magn. 47 3535

[90] Bose S, Raychaudhuri P, Bannerji R and Ayyub P 2006 Phys.
Rev. B 74 224502

[91] Bron C, Hong I-P, Patthey F, Sklyadneva Y I, Heid R,
Echenique P M, Bohnen K P, Chulkov E V and
Schneider W-D 2009 Phys. Rev. Lett. 102 207002

[92] Reich S, Leitus G, Popovitz-Biro R and Schechter M 2003
Phys. Rev. Lett. 91 147001

[93] Eom D, Qin S, Chou M-Y and Shih C K 2006 Phys. Rev. Lett.
96 027005

[94] Lee S et al 2013 Nat. Mater. 12 392
[95] Fernandes R M, Haraldsen J T, Woelfle P and Balatsky A V

2013 Phys. Rev. B 87 014510
[96] Romero-Bermudez A and Garcia-Garcia A M 2014 Phys.

Rev. B 89 024510
[97] Kruchinin S P and Nagao H 2012 Intern. J. Mod. Phys. B 26

1230013
[98] Popov V N 1987 Functional Integrals and Collective

Excitations (Cambridge: Cambridge University Press)
[99] Mühlschlegel B 1962 J. Math. Phys. 3 522
[100] Shanenko A A, Orlova N V, Vagov A, Milosevic M V,

Axt V M and Peeters F M 2013 EPL 102 27003

14

Adv. Nat. Sci.: Nanosci. Nanotechnol. 6 (2015) 013001 M P Das and B J Wilson

http://dx.doi.org/10.1103/PhysRevB.68.184507
http://dx.doi.org/10.1103/PhysRevB.72.214516
http://dx.doi.org/10.1103/PhysRevB.72.214516
http://dx.doi.org/10.1109/TMAG.2011.2146762
http://dx.doi.org/10.1103/PhysRevB.74.224502
http://dx.doi.org/10.1103/PhysRevLett.102.207002
http://dx.doi.org/10.1103/PhysRevLett.91.147001
http://dx.doi.org/10.1103/PhysRevLett.96.027005
http://dx.doi.org/10.1038/nmat3575
http://dx.doi.org/10.1103/PhysRevB.87.014510
http://dx.doi.org/10.1103/PhysRevB.89.024510
http://dx.doi.org/10.1142/S0217979212300137
http://dx.doi.org/10.1142/S0217979212300137
http://dx.doi.org/10.1063/1.1724250
http://dx.doi.org/10.1209/0295-5075/102/27003

	1. Introduction (with a brief history)
	1.1. GL theory derivable from BCS
	1.1.1. GL theory
	1.1.2. BCS theory
	1.1.3. Equivalence of GL with BCS near Tc


	2. Multiband superconductors
	2.1. Multiband GL theory
	2.2. Multiband BCS theory
	2.3. GL derived from BCS

	3. Beyond the standard GL theory
	4. From bulk to nano or &#x02018;nano in bulk&#x02019; in a superconductor
	4.1. Kubo gap
	4.2. Anderson criterion
	4.3. Theories
	4.4. GL theory for nanosuperconductors
	4.5. Reduced BCS Hamiltonian for nanosuperconductors
	4.6. Nano superconductivity in multiband systems
	4.7. Multiband nano superconductivity by BCS-Richardson model
	4.8. Multiband nano superconductivity by extended GL model

	5. Epilogue
	Acknowledgments
	References



