622 research outputs found

    Pulse oximetry in low-resource settings during the COVID-19 pandemic

    Get PDF
    This article is freely available via Open Access. Click on the Publisher URL to access it via the publisher's site.NS and DR contributed to study design, data analysis, data interpretation, writing of the manuscript, and clinical revision. SB, IW, and MT contributed to study design and clinical revision. YMA, LA, HAM, MWM, and EM contributed to data collection, data interpretation, and clinical revision. TGW contributed to study design, data interpretation, writing of the manuscript, and oversight. NS is a surgical safety fellow, SB is the programme manager, and TGW is the consulting medical officer for Lifebox. YMA is an employee of Jhpiego. YMA, LA, HAM, MWM, and EM were supported by Lifebox for contribution of their time in data collection. NS is supported by a National Institutes of Health T32 grant, DK007573. DR was supported by institutional funds from New York University School of Medicine. IW and MT declare no competing interests.published version, accepted version, submitted versio

    N-glycomic Complexity in Anatomical Simplicity: Caenorhabditis elegans as a Non-model Nematode?

    Get PDF
    Caenorhabditis elegans is a genetically well-studied model nematode or “worm”; however, its N-glycomic complexity is actually baffling and still not completely unraveled. Some features of its N-glycans are, to date, unique and include bisecting galactose and up to five fucose residues associated with the asparagine-linked Man2−3GlcNAc2 core; the substitutions include galactosylation of fucose, fucosylation of galactose and methylation of mannose or fucose residues as well as phosphorylcholine on antennal (non-reducing) N-acetylglucosamine. Only some of these modifications are shared with various other nematodes, while others have yet to be detected in any other species. Thus, C. elegans can be used as a model for some aspects of N-glycan function, but its glycome is far from identical to those of other organisms and is actually far from simple. Possibly the challenges of its native environment, which differ from those of parasitic or necromenic species, led to an anatomically simple worm possessing a complex glycome

    The Glycosylation Capacity of Insect Cells

    Get PDF
    It is generally accepted that insects primarily synthesise oligomannosidic and paucimannosidic N-glycan structures. Indeed, insects’ capability to produce human-like complex type N-glycans has been a matter of controversy for a number of years. The relative or complete lack of these structures was primarily attributed to low (or undetectable) activities of the glycosyltransferases needed to drive the synthesis of hybrid and complex type N-glycans (i.e., b-1,2-N-acetylglucosaminyltransferases I and II, b-1,4-galactosyltransferase, a-2,3- and a-2,6-sialyltransferases). Recent developments, fuelled by availability of genomic sequences and by advances in relevant methodologies, have shed some light on the subject, with a few unexpected twists. The identification of a transmembrane/Golgi hexosaminidase, an enzyme which removes a non-reducing N-acetylglucosamine residue during N-glycan biosynthesis, has demonstrated that the synthesis of complex-type N-glycans is actively and deliberately being prevented in insects. On the other hand, the characterisation of an active a-2,6-sialyltransferase in Drosophila, combined with the occurrence of sialylated N-glycan structures as detected in a detailed analysis of Drosophila embryos, has clearly shown that insects can, and need to, synthesise low levels of these structures. The current understanding of the insect N-glycan biosynthetic pathways taking place in Golgi apparatus and trans-Golgi network are elaborated and discussed

    The “four Ds” and support for Local Smart Grids: analysis from national surveys in the UK and Canada

    Get PDF
    Local Smart Grids are emerging during the climate crisis, as governments and industry recognize the need to better integrate intermittent renewable energy, storage, transportation, heating, and smart technologies. Such projects can represent profound changes to the status quo of energy and citizen lifestyles. They are also being associated with the “four Ds,” whereby Local Smart Grids are decarbonizing, decentralizing, digitalizing, and potentially democratizing energy systems. Yet, due to their recent arrival, there is very little social scientific research that has aimed to better understand public views, expectations, and support for this change. We attempt to fill this important gap in the literature through the analysis of two nationally representative surveys in the UK (n = 3034) and Canada (n = 941). This analysis highlights within- and between-country trends, including how the variation in responses regarding the “four Ds,” demographic factors, and other variables may explain the differences we see in terms of support for energy system change in the UK and Canada. Our analysis also shows that there are common elements, including the importance of the decentralization, and especially the democratization of energy in shaping support. We hope that this study will help governments, industry, community groups, and local residents themselves in both countries come together to advance the kind of Local Smart Grids that address climate change and represent a supported, just energy transition

    Parasite Glycobiology:A Bittersweet Symphony

    Get PDF
    Human infections caused by parasitic protozoans and helminths are among the world's leading causes of death. More than a million people die each year from diseases like malaria and neglected tropical diseases like leishmaniasis, trypanosomiasis, and schistosomiasis. Patients also endure disabilities that cause lifelong suffering and that affect productivity and development [1]. More insidiously, parasites generate important economic losses, since they often also infect commercially valuable animals. Worldwide, exposure to parasites is increasing due to growing international travel and migrations, as well as climate changes, which affect the geographic distribution of the parasite vectors. The parasitic threat is also aggravated by the rise of the immunocompromised population, which is particularly sensitive to parasite infections (e.g., individuals with AIDS and other immunodeficiencies). A common feature of protozoan parasites and helminths is the synthesis of glycoconjugates and glycan-binding proteins for protection and to interact and respond to changes in their environment. To address the many challenges associated with the study of the structure, the biosynthesis, and the biology of parasitic glycans, the authors of this article have established GlycoPar, a European Marie Curie training program steered by some of the world's academic leaders in the field of parasite glycobiology, in close association with European industrial enterprises. The main scientific goal of this network is the description of novel paradigms and models by which parasite glycoconjugates play a role in the successful colonization of the different hosts. By means of a training-through-research program, the aim of the network is to contribute to the training of a generation of young scientists capable of tackling the challenges posed by parasite glycobiology

    Schistosoma mansoni Larval Extracellular Vesicle protein 1 (SmLEV1) is an immunogenic antigen found in EVs released from pre-acetabular glands of invading cercariae.

    Get PDF
    Funder: IBERS, Aberystwyth University PhD studentshipFunder: Higher Education Funding Council for Wales (HEFCW) - Global Challenges Research FundExtracellular Vesicles (EVs) are an integral component of cellular/organismal communication and have been found in the excreted/secreted (ES) products of both protozoan and metazoan parasites. Within the blood fluke schistosomes, EVs have been isolated from egg, schistosomula, and adult lifecycle stages. However, the role(s) that EVs have in shaping aspects of parasite biology and/or manipulating host interactions is poorly defined. Herein, we characterise the most abundant EV-enriched protein in Schistosoma mansoni tissue-migrating schistosomula (Schistosoma mansoni Larval Extracellular Vesicle protein 1 (SmLEV1)). Comparative sequence analysis demonstrates that lev1 orthologs are found in all published Schistosoma genomes, yet homologs are not found outside of the Schistosomatidae. Lifecycle expression analyses collectively reveal that smlev1 transcription peaks in cercariae, is male biased in adults, and is processed by alternative splicing in intra-mammalian lifecycle stages. Immunohistochemistry of cercariae using a polyclonal anti-recombinant SmLEV1 antiserum localises this protein to the pre-acetabular gland, with some disperse localisation to the surface of the parasite. S. mansoni-infected Ugandan fishermen exhibit a strong IgG1 response against SmLEV1 (dropping significantly after praziquantel treatment), with 11% of the cohort exhibiting an IgE response and minimal levels of detectable antigen-specific IgG4. Furthermore, mice vaccinated with rSmLEV1 show a slightly reduced parasite burden upon challenge infection and significantly reduced granuloma volumes, compared with control animals. Collectively, these results describe SmLEV1 as a Schistosomatidae-specific, EV-enriched immunogen. Further investigations are now necessary to uncover the full extent of SmLEV1's role in shaping schistosome EV function and definitive host relationships

    Drug-Induced Exposure of Schistosoma mansoni Antigens SmCD59a and SmKK7

    Get PDF
    BACKGROUND: Schistosomiasis is a serious health problem especially in developing countries and affects more than 243 million people. Only few anthelmintic drugs are available up to now. A major obstacle for drug treatment is the different developmental stages and the varying host compartments during worm development. Anthelmintic drugs have been tested mainly on adult schistosomes or freshly transformed cercariae. Knowledge concerning the larval stages is lacking. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we used in vitro-grown schistosomula (aged between 2 to 14 days) to investigate drug effects of the three anthelmintics praziquantel, artemether, and oxamniquine. Further, we analyzed the antibody accessibility of two exemplary schistosome antigens SmCD59a and SmKK7, before and after drug treatment. Our results demonstrated that praziquantel applied at a concentration of 1 ÎŒM inhibited development of all life stages. Application of 10 ÎŒM praziquantel led to dramatic morphological changes of all schistosomula. Artemether at 1 and 10 ÎŒM had differential effects depending on whether it was applied to 2-day as compared to 7- and 14-day schistosomula. While 2-day schistosomula were not killed but inhibited from further development, severe morphological damage was seen in 7- and 14-day schistosomula. Oxamniquine (1 and 10 ÎŒM) led to severe morphological impairment in all life stages. Analyzing the accessibility of the antigens SmCD59a and SmKK7 before drug treatment showed no antibody binding on living intact schistosomula. However, when schistosomula were treated with anthelmintics, both antigens became exposed on the larvae. Oxamniquine turned out to be most effective in promoting antibody binding to all schistosomula stages. CONCLUSION: This study has revealed marked differences in anthelmintic drug effects against larvae. Drug treatment increases surface antigen presentation and renders larvae accessible to antibody attack

    Meteors: A Delivery Mechanism of Organic Matter to the Early Earth

    Full text link
    All potential exogenous pre-biotic matter arrived to Earth by ways of our atmosphere, where much material was ablated during a luminous phase called "meteors" in rarefied flows of high (up to 270) Mach number. The recent Leonid showers offered a first glimpse into the clusive physical conditions of the ablation process and atmospheric chemistry associated with high-speed meteors. Molecular emissions were detected that trace a meteor's brilliant light to a 4,300 K warm wake rather than to the meteor's head. A new theoretical approach using the direct simulation by Monte Carlo technique identified the source-region and demonstrated that the ablation process is critical in the heating of the meteor's wake. In the head of the meteor, organic carbon appears to survive flash heating and rapid cooling. The temperatures in the wake of the meteor are just right for dissociation of CO and the formation of more complex organic compounds. The resulting materials could account for the bulk of pre-biotic organic carbon on the early Earth at the time of the origin of life.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/43257/1/11038_2004_Article_310535.pd
    • 

    corecore