L

brought to you by .. CORE

View metadata, citation and similar papers at core.ac.uk

CROATICA CHEMICA ACTA
CCACAA 81 (1) 7-21 (2008)

ISSN-0011-1643
CCA-3207
Review

The Glycosylation Capacity of Insect Cells

Dubravko Rendié, Iain B. H. Wilson, and Katharina Paschinger*

Department fiir Chemie, Universitdt fiir Bodenkultur, Muthgasse 18, A-1190 Wien, Austria

RECEIVED MARCH 30, 2007; REVISED JULY 19, 2007; ACCEPTED JULY 20, 2007

It is generally accepted that insects primarily synthesise oligomannosidic and paucimannosidic
N-glycan structures. Indeed, insects’ capability to produce human-like complex type N-glycans
has been a matter of controversy for a number of years. The relative or complete lack of these
structures was primarily attributed to low (or undetectable) activities of the glycosyltransferases
needed to drive the synthesis of hybrid and complex type N-glycans (i.e., -1,2-N-acetylglu-
cosaminyltransferases I and II, 3-1,4-galactosyltransferase, a-2,3- and a-2,6-sialyltransferases).
Recent developments, fuelled by availability of genomic sequences and by advances in rele-
vant methodologies, have shed some light on the subject, with a few unexpected twists. The
identification of a transmembrane/Golgi hexosaminidase, an enzyme which removes a non-re-
ducing N-acetylglucosamine residue during N-glycan biosynthesis, has demonstrated that the

Keywords  synthesis of complex-type N-glycans is actively and deliberately being prevented in insects.
insect  On the other hand, the characterisation of an active a.-2,6-sialyltransferase in Drosophila, com-
N-glycan  bined with the occurrence of sialylated N-glycan structures as detected in a detailed analysis of

sialic acid
glycoprotein
hexosaminidase

Drosophila embryos, has clearly shown that insects can, and need to, synthesise low levels of
these structures. The current understanding of the insect N-glycan biosynthetic pathways tak-
ing place in Golgi apparatus and frans-Golgi network are elaborated and discussed.

INTRODUCTION a major goal with both academic and industrial significan-
ce. Since post-translational modifications affect protein
function, the glycosylation of recombinant proteins is one

factor which must be considered in their production.

The glycosylation of proteins, whether N- or O-linked, is
a major category of post-translational modification in both
eukaryotic and prokaryotic species; however, it is highly
diverse — ranging from the S-layer glycoproteins of bac-
teria to the complex N-glycans present in vertebrates.! In
recent years, the use of molecular biology has facilitated

THE FIRST STUDIES

the decoding of numerous genes, including hundreds in-
volved in glycosylation and has fuelled a need for ade-
quate systems to enable the study of the encoded proteins.
The amounts of protein from natural sources can be a sig-
nificant hurdle for biological and medical applications;
thus, the production of recombinant proteins has become

Although insect cells are frequently used as hosts for the
expression of recombinant proteins because of their eu-
karyotic post-translational modification capacities and abil-
ity to express larger quantities of recombinant protein,
there is only limited data available on the naturally-oc-
curring N-glycan structures in insects (see review, Ref. 2);
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Figure 1. Structures commonly found in various insect species. The paucimannosidic structures are underlined. The glycans are depicted
following the glycan nomenclature of the Consortium for Functional Glycomics (http://www.functionalglycomics.org).

the presence of paucimannosidic N-glycans is seen as hall-
mark of insect glycosylation (for typical insect structures
see Figure 1). One of the first studies examining endoge-
nous insect N-glycans dealt with mosquito cells (Aedes
albopictus) and has included pulse label experiments with
3H-mannose followed by endo-f-N-acetylglucosaminidase
H and o-mannosidase treatment of glycopeptides; the
mosquito cells were found to contain high mannose and
MM structures, but no complex oligosaccharides, were
detected.? The existence of mannosidase-resistant labelled
structures in these experiments could not be explained,
although considering current understanding of insect N-
glycosylation potential, these effects were potentially
caused by the presence of paucimannosidic glycans, as
well as the conversion of mannose to fucose, which is
theoretically possible since GDP-fucose, the fucosyltrans-
ferase donor is derived from GDP-mannose.* Another of
the initial articles on an insect glycosylation profile utilis-
ed another mosquito larval cell line (Aedes aegypti).
Through a combination of sugar compositional analysis
and enzyme digests (mainly a-mannosidases and endo-
[B-N-acetylglucosaminidase H from Streptomyces griseus),
ManyGIcNAc, was found as the major N-glycan structure
on a membrane protein, whereas the presence of fucose
(0.65 residues per GIcNAc residue) was neglected in the
carbohydrate analysis.> Analysis of a haemolymph protein
from Manduca sexta also only resolved MangGlcNAc,
(i.e., Man9).6

CORE FUCOSYLATION OF N-GLYCANS

The long-held belief that insects have the capacity to syn-
thesise only high mannosidic structures was partly contra-
dicted by sugar composition and permethylation analysis
of the important honeybee venom allergen phospholi-
pase A,, on which the presence of non-reducing terminal
GIcNAc and a-1,6-linked fucose was demonstrated, an
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indication for the insect’s capacity to perform the first bio-
synthetic steps towards complex glycans.” Furthermore,
in honeybee venom gland extract, a novel a-1,3-fuco-
syltransferase with the ability to convert GnGnF® into a
difucosylated structure with two Fuc residues at the Asn
bound GIcNAc was detected. The presence of more than
one Fuc residue linked to the same monosaccharide on
this structure was verified by NMR analysis. Since no
transfer of fucose to either MM or MMF® was observ-
ed,? it became obvious that the prior action of B-1,2-N-
acetylglucosaminyltransferase I (GnTI) is necessary in
insects, a result now confirmed with a recombinant form
of the honeybee core a-1,3-fucosyltransferase.® The nat-
ural occurrence of the Fucal,6(Fuca 1,3)GIcNAc moiety
on the PNGase A released paucimannosidic structures
from bee-derived glycoprotein phospholipase A,'0 as well
as from hyaluronidase'! corroborated the data on the
a-1,3-fucosyltransferases, further demonstrating the ex-
istence of double-fucosylated N-glycan structures in in-
sects (Figure 2).

As regards the fucosyltransferase activities, of the
lepidopteran cell extracts from the MB-0503 (Mamestra
brassicae), Bm-N (Bombyx mori) and St-9 (Spodoptera
frugiperda) cells, only MB-0503 detectably converted the
IgG GnGnF® glycopeptide into the difucosylated struc-

Lewis-like o
structure

Figure 2. The most complex glycan structure found on bee venom
glycoproteins. Apart from the difucosylated proximal GlcNAc
residue, this structure carries a third fucose residue linked to the
terminal LacdiNAc structure on the a.-1,3-arm, thereby forming a
Lewis-like structure. The glycan structure, later referred to as
MGNFF3F¢, is depicted using the same system as in Figure 1.
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ture.'? Also, analysis of PA-labelled glycans released with
PNGase A from membrane glycoproteins of the three cell
lines (Sf-21, MB-0503, Bm-N) was performed by 2D-
HPLC in combination with exoglycosidase digests. MMF®,
MMF?, MUF®, MUF?F, MGnF°, MGnF3F°, GnMF° and
GnMPF®, but no MUF?, MGnF? or GnMFP3, were found,!3
which is probably a result of relatively higher activity le-
vels of the a-1,6-fucosyltransferase in the relevant Golgi
compartment. Consistent with the detected activity, the
MB-0503 cell line exhibited the highest degree of a.-1,3-
fucosylated glycans; the two other cell lines were also
capable of synthesising these structures, albeit at low le-
vels.!3 A further factor in determining the core fucosyla-
tion pattern is that a-1,6-fucosylation cannot take place
after o.-1,3-fucosylation. !

The presence of core a-1,3-fucose in Lepidopteran
cell lines is not just of significance for what it says about
the glycomic potential of insects in general, but is also
of interest due to the use of these cells in biotechnology,
since core a.-1,3-fucosylation is known to be immunoge-
nic and constitutes an epitope for antisera raised against
plant glycoproteins such as horseradish peroxidase'” as
well as for IgE from patients allergic to plant and insect
materials.'® Thus, when considering hosts for production
of proteins for potential therapeutic use, the presence of
core a-1,3-fucose on specific recombinant glycoproteins
must be examined. Indeed, a large amount of data as to
the glycosylation potential of different insect cell lines
has been gained by expressing various, mainly human,
recombinant proteins (see Table I), with Spodoptera fru-
giperda (S19) and Trichoplusia ni (High Five) represent-
ing the most commonly-used insect cell lines; interes-
tingly both these lines are ovary-derived and so their gly-
cans do not necessarily reflect the complete glycomic
potential of insect species. Certainly, the use of insect cells
as expression systems is regarded as an option to circum-
vent the limitation of glycoprotein expression in micro-
organisms primarily due to the either complete lack of
mammalian-type glycosylation when expressed in E. coli
or the limitation to oligomannosidic structures (with po-
tential hypermannosylation) when expressed in Pichia
pastoris or other yeasts. Whereas the Trichoplusia ni cell
line does add a.-1,3-fucose to recombinant proteins,'7-20
this residue has not be detected on glycoproteins expres-
sed in Spodoptera frugiperda Sf9 cells, even when the
authors specially used PNGase A,2! an enzyme known to
release this type of glycans.?2 In most of the studies on
recombinant glycoproteins from Spodoptera frugiperda
cells, PNGase F or hydrazine have been used to liberate
the oligosaccharides from the peptide chain. Both met-
hods are known to result in a loss of information: the
PNGase F is known not to release N-glycan structures con-
taining a-1,3-fucose, whereas, in the case of hydrazino-
lysis process, the a.-1,3-fucose substituent might be eli-
minated or result in artefacts.?* Nevertheless, in a study
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published in 1991, hydrazine was applied to release oli-
gosaccharides from Drosophila melanogaster glycopro-
teins. The expected well-known oligomannose series, as
well as a.-1,6-fucose linked to the inner GIcNAc on MM
and MU, was found, whereas some structures could not
be clearly identified due to their low occurrence. Inte-
restingly, despite the carbohydrate-based immunological
cross-reactivity between Drosophila neural tissue and hor-
seradish peroxidase, when using anti-horseradish peroxi-
dase (anti-HRP),2+2¢ neither core a-1,3-fucose nor 3-1,2-
xylose (two substitutions typical for plants) were reported
in this?” or other?® early studies which used hydrazine to
release N-glycans from flies.

It was only in 2001, that the final piece in the puzzle
about the basis for anti-HRP staining in Drosophila was
found; then, finally, the presence of MMF3F®, as 1 % of
the total N-glycan pool, could be proven in PNGase A
released N-glycans from Drosophila. Also the relevant ac-
tivity of a recombinant a-1,3-fucosyltransferase (FucTA)
tested in vitro to transfer fucose in a-1,3-linkage to the
innermost GIcNAc of GnGnF° GnGn, GalGalF° and
GalGal, but not to MMF® nor to MM, was defined.?®
Furthermore, RNAI targeting the transcripts of FucTA
was found to result in a decrease in anti-HRP reactivity
of a Drosophila neural cell line.3® Also, an endogenous
C-type receptor binding to glycans with core o.-1,3-fucose
was found in the model organism,3' whereas one speci-
fic male sex peptide was found to carry a difucosylated
N-glycan.??

COMPLEX TYPE N-GLYCANS IN INSECTS

Amongs other N-glycan structures found on the bee venom
phospholipase A,, a structure containing a GalNAcf1-
4(Fuca.1-3)GlcNAcB 1-2 moiety linked to the o-1,3-arm
was detected (Figure 2). As previously mentioned, the
identification of this structure was the first indication
that insects are capable of performing chain-elongation
in the direction of complex glycans starting with the
transfer of GIcNAc to the o.-1,3-arm.33 Reappraisal of the
bee venom glycans with FAB-MS3* and, most recently,
MALDI TOF-TOF MS35 supported the findings publish-
ed by Kubelka et al., as has the recent definition of a re-
combinant honeybee enzyme capable of synthesising a
fucosylated form of LacdiNAc.? However, the remaining
N-glycans of the hymenopteran insect (bee) resemble
those from lepidopteran (butterflies, moths) and dipteran
(flies) species carrying mainly high-mannosidic and pau-
cimannosidic structures.

In contrast, the orthoptera Locusta migratoria (locust)
was found to produce unusual N-glycans with phospho-
rylethanolamine (AEP; aminoethylphosphonate) linked to
the 6-position of Man or non-reducing terminal GlcNAc
residues?® (Figure 3a); the AEP moiety is also found on
insect glycolipids®’ and wasp O-glycans.?® On the other
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Figure 3. Unusual N-glycan features found on locust (a) and royal
ielly glycoproteins (b). The glycan structures are depicted using the
same system as in Figure 1; AER aminoethylphosphonate.

hand, NMR data of royal jelly glycoproteins, in combi-
nation with exoglycosidase digestions of PA-labelled gly-
cans analysed by 2D-HPLC, led to the claim of a Galp1-
3(GlcNAcB1-2)GIcNAcB 1-4 moiety on the a-1,3-arm,
which could suggest the action of N-acetylglucosaminyl-
transferase IV (GnTIV) in the honeybee® (Figure 3b). In-
terestingly, a similar modification but with a 3-1,4-link-
ed galactose residue has been found in Drosophila.*0*!

Indeed, the matter of galactosylation and/or sialyla-
tion in insects has, as also discussed below, generated the
most controversy. Recently, though, an active Drosophila
sialyltransferase*? as well as very low levels of sialylat-
ed N-glycans in Drosophila embryos have been describ-
ed,*0 thus verifying old data suggesting the presence of
sialic acids in insects.*? Interestingly, although a pB-1,4-
galactosyltransferase homologue in Drosophila can only
transfer GalNAc,*** the sialic acid in fly N-glycans is
attached via B-1,4-galactose; thus, the nature of the re-
levant N-glycan modifying galactosyltransferase is still
to be resolved.

GOLGI HEXOSAMINIDASE

In contrast to the more divergent glycans present on en-
dogenous insect glycoproteins, for most of the glycopro-
teins expressed in insect cells, either from lepidopteran
or dipteran species, the oligosaccharide side chains have
been reported to consist either of the high mannosidic
type or of truncated trimannosyl N-glycans with fucose
a1,6-linked to the inner GIcNAc (see Table I, also for a
review Ref. 46). In general, N-glycosylation sites occu-
pied in native mammalian proteins by complex glycans
(for a biantennary complex mammalian structure see Fig-
ure 5) were, in their recombinant insect forms, replaced
by fucosylated MM structures or by processed mannosidic
structures.4”49 In addition, no trace of GnGn, GnGnF®,
GnGnF? nor of GnGnF3F on membrane glycoproteins
of the three cell lines (Sf-21, MB-0503, Bm-N) was re-
ported, although low levels of variants with MGn or GnM
as well as paucimannosidic fucosylated species were
present. These phenomena were explained by the action
of an endogenous hexosaminidase specific for the GlcNAc
in 3-1,2-linkage to the o.-1,3-arm and the rather low acti-
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vity of -1,2-N-acetylglucosaminyltransferase II respon-
sible for the GlcNAc transfer to the a-1,6-arm.!3

The relevant membrane bound Golgi B-N-acetylglu-
cosaminidase, that was initially identified in a Golgi
preparation of the insect cells, exclusively removed the
GlcNAc residue from the a-1,3-arm when using GnGn-,
MGn- and GnGnF°-PA as substrates. This reaction is,
therefore, indeed counteracting the chain elongation ca-
talysed by GnTI and, subsequently, the formation of Lac-
diNAc units as found in bee venom.>® Another example
comes from a study comparing the glycans present on
influenza virus haemagglutinin expressed either in Spo-
doptera frugiperda (Sf9) or in Estigmene acrea (Ea) cells,
which showed a relative abundance of MM : MGn : GnGn
of 90 : 10 : 0 in Sf9 cells versus 12 : 72 : 16 in Ea cells.
Since Sf9 cells exhibited a 2.5-fold higher GnTI level,
the apparent lack of GIcNAc on the glycans of these cells
is due to the high endogenous f3-N-acetylglucosaminidase
activity removing GIcNAc preferentially from MGn; in
contrast, in the Ea cell lysate only a minor hexosamini-
dase activity was present.’! Indeed, very recently the rele-
vant enzyme from Drosophila has been identified, clearly
demonstrating the deliberate action of a -N-acetylglu-
cosaminidase in processing of N-glycans.’? A deletion in
the relevant fused lobes (fdl) gene has a major impact on
the Drosophila N-glycan profile consistent with its in
vitro activity. On the other hand, two newly-described
hexosaminidases from Sf9 cells do not, though, possess
the same exact specificity for N-glycans.>35

Regarding the final structures of glycans of insect cell-
produced proteins, other potential locations for hexos-
aminidase action should be considered. Glycan chains of
proteins produced and secreted into the medium are ac-
cessible to the exoglycosidases (mainly 3-N-acetylgalact-
osaminidase and [B-N-acetylglucosaminidase, but also
sialidase) that are present in the medium.>>-¢ Also, in the
supernatant of the cells from Spodoptera frugiperda (fall
army worm), Bombyx mori (silkworm), Trichoplusia ni
(cabbage looper) and Malacosoma disstria (forest tent
caterpillar) infected with baculoviruses, -N-acetylglu-
cosaminidase activity was found to rise dramatically in
the first 30 h post-infection. The proposed explanation
was that the cell lysis occurring during viral infection
leads to the release of endogenous glycosidases. As
another source for the measured glycosidase activities in
the media, non-heat inactivated foetal bovine serum should
be considered too. Indeed, in an unused culture medium
supplemented with 10 % foetal bovine serum, a weak
endogenous activity of -N-acetylglucosaminidase and
B-galactosidase was detected.?

Examining the glycosylation capacity of insects has
also included testing cell extracts for transferase activi-
ties. In cultured lepidopteran cells active GnTI and GnTII
were found when incubating extracts of the cell lines with
MM-, Man5- and MGn-PA. Compared to the human en-
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Figure 4. Current understanding of N-glycan biosynthetic pathways in the insect Golgi apparatus and trans-Golgi network. In insects,
oligomannosidic N-glycans are processed by mannosidases as far as the Man5 structure, which serves as substrate for B-1,2-N-acetyl-
glucosaminyltransferase | (GnTl). Man5Gn is either trimmed down by a.-mannosidase Il to MGn or is, via Man4Gn, substrate for either
the Golgi B-N-acetylglucosaminidase (Hex) and/or the core a.-1,6-fucosyltransferase (FT6), thus resulting in formation of Man4, Man4GnFé
or Man4F¢. Through the action of core a-1,6-fucosyltransferase, Golgi B-N-acetylglucosaminidase and B-1,2-N-acetylglucosaminyltrans-
ferase Il (GnTIl), GnGn, GnM, GnGnF¢, GnMF¢, MM and MMF¢ are formed. MGnFé, GnGnF¢é and Man4GnFé can be used as sub-
strates by the core a-1,3-fucosyltransferase (FT3) leading to di-fucosylated structures. The transfer of the a-1,3-fucose precludes the
subsequent action of the core a-1,6-fucosyltransferase, thus leading to GnGnF3, GnMF3, MMF3, MGnF3. A mannosidase, which seems
to prefer a.-1,3-arm mannose, is involved in creation of MU, MUF3F¢ and MUF¢ structures. The dominant structures found in most insect
species (Man5-Man9, MMFé and MM) are printed in bold. The enzymes whose activities are not clearly assigned to a specific pro-
tein/DNA sequence are in brackets. The MGNFF3F¢ structure is depicted in Figure 2; the MGnGal and MGnGn structures are trianten-
nary N-glycans with non-reducing terminal mannose on the a-1,6-arm and B-1,2- and B-1,4-linked GlcNAc residues on a-1,3-arm with
or without a terminal galactose residue and are precursors of the sialylated structures shown in Figure 5b. The MGn structure (highlighted
with a solid square) is a substrate for a number of enzymes: Golgi B-N-acetylglucosaminidase, FT3, FT6, B-1,4-galactosyltransferase
(GalT), GnTll and B-1,4-N-acetylglucosaminyltransferase IV (GnTIV); the result of this competition determines the final, relative amounts
of complex (e.g., GnGn), hybrid (e.g., MGn) and paucimannosidic structures (e.g., MMF9). The structures highlighted with dotted squares
were found only in Drosophila embryos/on bee venom glycoproteins. In vitro analysis of Sf9 a.-mannosidase Il suggested that a direct
route from Man5 to MM (and possibly MU and UM) may exist.>”

zymes, the transfer rate of the insect GnTI to MM-PA was
10 times less effective while the physiologically relevant
Man5-PA was equally processed. On the other hand, the
amount of GnTII activity (at least when tested with
MGn-PA; the potentially relevant MGnF-PA was not
tested) was some 72-400 times less than in a mammalian
cell line. When testing the fucosylation rate of various
glycans, MGn-peptide was processed at half the rate com-
pared to GnGn-peptide while MM-peptide was not a sub-
strate. Thus, the a-1,3-arm GlcNAc constitutes the »go«
signal for the a-1,6-Fuc-T. This GIcNAc residue is not
present on the paucimannosidic fucosylated structures
and therefore has been proposed to have a transient role
in the biosynthesis of insect glycans® (Figure 4). Also, a
-1,4-N-acetylgalactosaminyltransferase was found to be
expressed in lepidopteran cell lines capable of transfer-
ring GalNAc from UDP-GalNAc in 3-1,4-linkage to ter-
minal B-linked GlcNAc, thereby, synthesizing the complex
type LacdiNAc unit as found in the bee venom, whereas

only a minor (-4-galactosyltransferase activity was de-
tected in these cells.’® Relevant B-1,4-N-acetylgalactos-
aminyltransferases from Trichoplusia ni and Drosophila
have been expressed in a recombinant form;*%0 the
Drosophila B-1,2-N-acetylglucosaminyltransferase I has
also been characterised®! and shown to play an impor-
tant role in normal N-glycan biosynthesis in the fly.

SIALYLATION IN INSECTS

A common feature on complex type N-glycans in mam-
mals is terminal sialylation (Figure 5a). To understand the
(near) absence of sialylated, complex glycans in insects the
availability of the nucleotide sugars was studied. HPAEC
of lysed cell extracts from Sf9 cells and High Five cells
grown in serum free medium demonstrated the absence of
CMP-NeuAc while the concentrations of UDP-GIcNAc,
UDP-Gal, UDP-Glc, GDP-Fuc and GDP-Man were equal
to, or higher than, those reported in CHO cells. In gene-
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ral, High Five cells showed the highest concentrations of
nucleotide sugars other than GDP-Man.%3

With the exception of the recent data on Drosophila
embryos, analyses of a variety of insect species by a
number of groups failed to find complex-type glycans
modified with sialyl-residues. Nevertheless, one group
detected sialylated N-glycan structures on recombinantly
expressed plasminogen in insect cells. These authors used
a combination of exoglycosidase digestions and HPAEC;
monosaccharide analysis was performed after digestion
with a clam exoglycosidase mixture and separation of
the released monosaccharides from the enzyme mixture
with an ultrafiltration device. The elution profile of the
monosaccharides and the oligosaccharides were compar-
ed with commercial standards. Their first published data
on Spodoptera frugiperda SF21 AE cells showed mainly
Man9, Man5, Man4 and MM and about 20 % of a si-
alylated biantennary structure when the plasminogen was
collected for 48 h post-infection.®* In another cell line
(MB-0503) tested by the same authors even more com-
plex structures like asialo biantennary (GalGal, 7 %), and
fucosylated asialo biantennary (GalGalF°, 3 %), bisialo
biantennary (28 %) and fucosylated bisialo biantennary
(25 %) were found.®> The same lab handled at the same
time 23 different insect cell lines from Spodoptera frugi-
perda, Spodoptera exigua, Mamestra brassicae, Tricho-
plusia ni, Anticarsia gemmatalis, Choristoneura fumife-
rana, Estigmene acrea, Heliothis viresens, Heliothis zea,
Lymantria dispar, Manduca sexta and Plutella xylostella in
six different media (depending on the used cell line).%
In the same lab, Chinese hamster ovary (CHO) cells ex-
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Figure 5. Relevant N-glycan structures with terminal sialic acid.
Example of a typical mammalian structure with terminal sialic acid
residues and a-1,6-fucose on the core (a). Sialylated structures
found in Drosophila embryos lack the fucose residues and carry
only one sialic-acid residue (b). Sialylated structures were until re-
cently considered not to be present in wild-type insect cells; a de-
tailed analysis of N-glycans from Drosophila embryo confirmed
their presence, albeit in a very low amount.*0 In this study, the ga-
lactose residues were found to be (3-1,4)-linked to GlcNAc resi-
dues, unlike the (B-1,3)-linked residues found on royal jelly glyco-
proteins3? (also see Figure 3). The glycan structures are depicted
using the same system as in Figure 1.
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pressed plasminogen with bi-, tri- and tetraantennary
complex type structures containing variable amounts of
sialic acids in a-2,6 and a-2,3 linkage as well as MM,
MMPF°, GnGnF°, MansGlcNAc, and MangGlcNAc,.
The previously mentioned Sf21 AE cells were found to
express recombinant plasminogen with o-2,6- and a-2,3-
sialylated bi-, tri- and tetraantennary glycans when the
protein was harvested 96 h post-infection; multiantennary
glycans have, though, not been found by others studying
glycans from this cell line. Furthermore, this group
claimed that the amount of complex glycans correlates
with the length of infection time.%® Nevertheless, while
other labs nowadays put a lot of effort to humanize in-
sect cell lines, these »already« humanized lines were put
aside to continue expression in Pichia pastoris®® as well
as revisiting insect cells with expression of plasminogen
in Drosophila S2 (macrophage-like) cells, but without
examining the glycan profile.”0

In other labs, lectins such as Sambucus nigra agglu-
tinin (SNA) have been used, in conjunction with sialidase
treatment, to claim the presence of sialic acid on insect
glycoproteins.”!72 In our lab, however, SNA was found to
also bind GalNAc-carrying N-glycans (unpublished data),
a possible feature in insects since the relevant transferase
activity has been demonstrated in vitro; interestingly, the
sialidases used were tested for numerous glycosidase si-
de-activities, but not, according to the manufacturer’s in-
formation sheet, for GalNAcase activity. Although the re-
levant a-2,6-sialyltransferase activity could not be detected
in Sf9 cell line extracts,” recently it was demonstrated
that Drosophila does express an active a-2,6-sialyltrans-
ferase.*! Furthermore, detailed analysis of N-glycans of
Drosophila embryos revealed a minute amount of sialy-
lated N-glycan structures*® (also see Figure 5b).

It is clear that structural determination of oligosac-
charides is tedious work; due to various methods and ap-
plied techniques employed, it is difficult for other re-
searchers to compare results of varying precision or
reliability. Analyses employing HPLC-mapping of fluo-
rescent labelled glycans, together with exoglycosidase
digests and mass-spectrometric methods, appear to reveal
more of the occurring glycosylation pattern than other
approaches. During the last decade glycan analysis was
very much fine-tuned partly due to the use of advanced
mass-spectrometric methods. The increased sensitivity
of modern methods makes structures with relative low
abundance accessible for analysis, but, at the same time,
increases the need to avoid sample impurities which can
then also be easily reflected in the results. For example,
many of the proteins expressed in insect cells are mainly
purified on immunoaffinity columns, from which a bleed-
ing of the bound antibody cannot be excluded. Such ma-
terial would result in co-analysis of the glycan structures
present on the antibody used.”*

A lot more caution has to be taken when the insect
cells are grown in a culture supplemented with serum or
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fetuin. If then sialic acid-containing tri- or tetraantennary
structures are found, it is very likely that the analysed
structures are derived from fetuin that could not be se-
parated from the recombinant protein by the single step
purification. Suspicion should also arise when sialyated
or galactosylated biantennary, triantennary and tetraan-
tennary structures are reported while the precursors are
not present and when, at the same time, the cells used to
produce the glycoprotein contain no detectable activity
of the relevant transferases. Additionally, when studying
the glycosylation potential of cells one should choose a
reporter glycoprotein that is not already present in the
uninfected cells and/or medium;”3-77 certainly, serum-free
medium is to be preferred in such experiments. In other
studies, the rather unusual effects of microgravity’® or
hexosaminidase inhibition’? as regards the appearance of
sialylated structures in insect cells have been reported,
although the latter, in the light of recent identification of
N-glycan processing [3-N-acetylglucosaminidase, might
be of interest.

ENGINEERING GLYCOSYLATION IN INSECT
CELLS

From the previous results, it was in generally clear that
GnTI, GnTII, B-1,4-galactosyltransferase and sialyltrans-
ferases were the crucial enzymes limiting the glycan
structures in insect cells (for a review see Ref. 78). Hu-
man GnTI was the first enzyme which, when expressed
in Sf9 cells, led to an increase in the amount of terminal

a-glucosidase | and Il
a-mannosidase |

q—mannosidasek

GnTI
(UDP-GIcNAG)

&
_
i

FT3/FT6
(GDP-fucose)

13

GIcNAC residues.” Furthermore, expression of mamma-
lian -1,4-galactosyltransferase in Sf9 cells to extend the
N-glycosylation pathway in insects resulted in a galacto-
sylated end-product.’® Similar results were obtained when
expressing the 3-1,4-galactosyltransferase in Trichoplusia
ni cells. The galactose residues were attached exclusively
to the a-1,3-arm, although a trace amount of GnM was
also present. The action of the arm-specific hexosamini-
dase was then inhibited by galactosylation yielding MGal,
MGalF° and MGalF3F°; obviously, the level of GnTII
activity was not sufficient to compete for the same sub-
strate as the recombinantly expressed [3-1,4-galactosyl-
transferase, which itself has a bias towards the o-1,3-
arm. Nevertheless, a significant reduction of MMF3F°,
MMF°, MGnF® and MUF® was observed, the latter per-
haps being a product of an o.-mannosidase ITI>* or an un-
known a-1,3-mannosidase.8! Therefore, to humanise Sf9
cells further, they were additionally engineered with GnTII
and sialyltransferases (Figure 6). When grown in medium
supplemented with bovine fetuin these cells indeed were
able to produce biantennary, terminally sialylated N-gly-
cans.32 These cells did not, however, synthesise sialylated
N-glycans when cultured in serum free medium or when
supplemented with asialofetuin. Since Sf9 cells have only
low levels of sialic acid and no detectable CMP-sialic acid,
evidence for a sialic acid salvage pathway was strength-
ened by data indicating that sialylation occurred when
the cells were grown in medium supplemented with fetuin
or terminally sialylated N-glycans.

*® SiaT
) (CMP-Neu5Ac)

I pacarr
/ (UDP-Gal)

o7 GnTil
.*" (UDP-GIcNAG)

16
3
\Go!g hexosaminidase

Figure 6. »Humanisation« of the N-glycan processing pathway in insect cells. The dotted arrows indicate pathways which have to be
modified to induce increased levels of complex glycans.8> The sugar-donor substrates needed for the respective reactions are in brackets.
The glycan structures are depicted using the same system as in Figure 1.
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This salvage pathway involves endocytosis of sialo-
glycoconjugates from the medium, desialylation by lyso-
somal sialidases and release of free sialic acids to the cy-
toplasm while in the Golgi CMP-sialic acid is used as
donor.?3 Interestingly, a functional Golgi-targeted Droso-
phila melanogaster CMP-sialic acid synthetase has re-
cently been found.3* Furthermore, as mentioned above, a
recent study using chymotrypsin and trypsin to release
glycopeptides from Drosophila fly embryo powder
discovered traces of monosialylated biantennary glycans
thus proving the presence of sialic acid on a natural fly
glycan.40

For future therapeutic applications, the reduced half-
life of recombinant glycoproteins in the circulation due
to altered glycosylation and the possible presentation, on
these proteins, of immunogenic determinants such as a-
1,3-fucose are important issues. Thus, efforts directed at
engineering the glycosylation of these proteins by mani-
pulating the processing enzymes in insect cells could in-
clude repressing the [-N-acetylglucosaminidase and o.-
1,3-fucosyltransferase and/or introduction of additional
enzymes that would further »humanise« insect N-gly-
cans. Such strategies have become more realistic due to
the recent identification of insect hexosaminidases’2-54
and core fucosyltransferases.®2%-3¢ Therefore, additional
work is still required to identify relevant genes expres-
sed in commonly-used cell lines and to re-engineer these
to generate the 'ultimate' cell line with proper human-
like glycosylation.
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SAZETAK

N-glikozilacija u insekata

Dubravko Rendi¢, Iain B. H. Wilson i Katharina Paschinger

Smatra se da insekti uglavnom sintetiziraju oligomanozni tip N-vezanih Secera. Sinteza N-vezanih Secera
tipi¢nih za ljudski organizam u insekata vise je godina bila tema rasprave. Niska razina ili potpuni nedostatak
tih Secera pripisivana je niskoj (ili nemjerljivoj) razini aktivnosti glikoziltransferaza potrebnih za sintezu hi-
bridnog i kompleksnog tipa N-vezanih Secera (konkretno: [3-1,2-N-acetilglukozaminiltransferaze 1 i II, 3-1,4-
galaktoziltransferaza, o-2,3- i a-2,6-sijaliltransferaze). IstraZivanja novijega datuma, potaknuta dostupnoscu
sekvencija genoma i napretkom u odgovaraju¢im metodoloskim podrucjima, dala su novi uvid u to podrucje
ukljucujudi i neke neocekivane rezultate. Otkri¢e heksozaminidaze u Golgijevu kompleksu, enzima koji uklanja
N-acetilglukozamin s nereducirajuceg kraja N-vezanih Secera tijekom njihove sinteze, pokazalo je da je sinteza
ljudskog tipa N-vezanih Secera aktivno i namjerno potisnuta u insekata. S druge strane, otkrice aktivne o-2,6-
sijaliltransferaze u vinskoj musSici, uz dokaz prisutnosti N-vezanih Secera modificiranih sijalinskom kiselinom u
embrijima vinske muSice, jasno je pokazalo da insekti mogu i moraju sintetizirati male koli¢ine tih Secernih
struktura. U ovom se ¢lanku obrazlaZe i raspravlja trenutni stadij razumijevanja sinteze N-vezanih Secera u Gol-

gijevu kompleksu i trans-Golgijevoj mreZi insekata.
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