3,948 research outputs found

    Non-conformally flat initial data for binary compact objects

    Full text link
    A new method is described for constructing initial data for a binary neutron-star (BNS) system in quasi-equilibrium circular orbit. Two formulations for non-conformally flat data, waveless (WL) and near-zone helically symmetric (NHS), are introduced; in each formulation, the Einstein-Euler system, written in 3+1 form on an asymptotically flat spacelike hypersurface, is exactly solved for all metric components, including the spatially non-conformally flat potentials, and for irrotational flow. A numerical method applicable to both formulations is explained with an emphasis on the imposition of a spatial gauge condition. Results are shown for solution sequences of irrotational BNS with matter approximated by parametrized equations of state that use a few segments of polytropic equations of state. The binding energy and total angular momentum of solution sequences computed within the conformally flat -- Isenberg-Wilson-Mathews (IWM) -- formulation are closer to those of the third post-Newtonian (3PN) two point particles up to the closest orbits, for the more compact stars, whereas sequences resulting from the WL/NHS formulations deviate from the 3PN curve even more for the sequences with larger compactness. We think it likely that this correction reflects an overestimation in the IWM formulation as well as in the 3PN formula, by 1\sim 1 cycle in the gravitational wave phase during the last several orbits. The work suggests that imposing spatial conformal flatness results in an underestimate of the quadrupole deformation of the components of binary neutron-star systems in the last few orbits prior to merger.Comment: 22 pages, 7 figure

    Perchlorate formation on Mars through surface radiolysis‐initiated atmospheric chemistry: A potential mechanism

    Full text link
    Recent observations of the Martian surface by the Phoenix lander and the Sample Analysis at Mars indicate the presence of perchlorate (ClO4–). The abundance and isotopic composition of these perchlorates suggest that the mechanisms responsible for their formation in the Martian environment may be unique in our solar system. With this in mind, we propose a potential mechanism for the production of Martian perchlorate: the radiolysis of the Martian surface by galactic cosmic rays, followed by the sublimation of chlorine oxides into the atmosphere and their subsequent synthesis to form perchloric acid (HClO4) in the atmosphere, and the surface deposition and subsequent mineralization of HClO4 in the regolith to form surface perchlorates. To evaluate the viability of this mechanism, we employ a one‐dimensional chemical model, examining chlorine chemistry in the context of Martian atmospheric chemistry. Considering the chlorine oxide, OClO, we find that an OClO flux as low as 3.2 × 107 molecules cm–2 s–1 sublimated into the atmosphere from the surface could produce sufficient HClO4 to explain the perchlorate concentration on Mars, assuming an accumulation depth of 30 cm and integrated over the Amazonian period. Radiolysis provides an efficient pathway for the oxidation of chlorine, bypassing the efficient Cl/HCl recycling mechanism that characterizes HClO4 formation mechanisms proposed for the Earth but not Mars.Key PointsMechanism initiated by radiolysis in the surface can potentially account for observed Martian perchlorate concentrationsInjection of oxides of chlorine from the surface into the atmosphere is potentially an effective way of forming perchloric acidMartian perchlorate is an important oxidant but poorly characterizedPeer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/134196/1/jgre20553.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/134196/2/jgre20553_am.pd

    Numerical models of irrotational binary neutron stars in general relativity

    Get PDF
    We report on general relativistic calculations of quasiequilibrium configurations of binary neutron stars in circular orbits with zero vorticity. These configurations are expected to represent realistic situations as opposed to corotating configurations. The Einstein equations are solved under the assumption of a conformally flat spatial 3-metric (Wilson-Mathews approximation). The velocity field inside the stars is computed by solving an elliptical equation for the velocity scalar potential. Results are presented for sequences of constant baryon number (evolutionary sequences). Although the central density decreases much less with the binary separation than in the corotating case, it still decreases. Thus, no tendency is found for the stars to individually collapse to black hole prior to merger.Comment: Minor corrections, improved figure, 5 pages, REVTeX, Phys. Rev. Lett. in pres

    Functional disruptions of the brain in low back pain: A potential imaging biomarker of functional disability

    Get PDF
    Chronic low back pain (LBP) is one of the leading causes of disability worldwide. While LBP research has largely focused on the spine, many studies have demonstrated a restructuring of human brain architecture accompanying LBP and other chronic pain states. Brain imaging presents a promising source for discovering noninvasive biomarkers that can improve diagnostic and prognostication outcomes for chronic LBP. This study evaluated graph theory measures derived from brain resting-state functional connectivity (rsFC) as prospective noninvasive biomarkers of LBP. We also proposed and tested a hybrid feature selection method (Enet-subset) that combines Elastic Net and an optimal subset selection method. We collected resting-state functional MRI scans from 24 LBP patients and 27 age-matched healthy controls (HC). We then derived graph-theoretical features and trained a support vector machine (SVM) to classify patient group. The degree centrality (DC), clustering coefficient (CC), and betweenness centrality (BC) were found to be significant predictors of patient group. We achieved an average classification accuracy of 83.1%

    The Confluence of Stereotactic Ablative Radiotherapy and Tumor Immunology

    Get PDF
    Stereotactic radiation approaches are gaining more popularity for the treatment of intracranial as well as extracranial tumors in organs such as the liver and lung. Technology, rather than biology, is driving the rapid adoption of stereotactic body radiation therapy (SBRT), also known as stereotactic ablative radiotherapy (SABR), in the clinic due to advances in precise positioning and targeting. Dramatic improvements in tumor control have been demonstrated; however, our knowledge of normal tissue biology response mechanisms to large fraction sizes is lacking. Herein, we will discuss how SABR can induce cellular expression of MHC I, adhesion molecules, costimulatory molecules, heat shock proteins, inflammatory mediators, immunomodulatory cytokines, and death receptors to enhance antitumor immune responses

    Nonuniversal Effects in the Homogeneous Bose Gas

    Full text link
    Effective field theory predicts that the leading nonuniversal effects in the homogeneous Bose gas arise from the effective range for S-wave scattering and from an effective three-body contact interaction. We calculate the leading nonuniversal contributions to the energy density and condensate fraction and compare the predictions with results from diffusion Monte Carlo calculations by Giorgini, Boronat, and Casulleras. We give a crude determination of the strength of the three-body contact interaction for various model potentials. Accurate determinations could be obtained from diffusion Monte Carlo calculations of the energy density with higher statistics.Comment: 24 pages, RevTex, 5 ps figures, included with epsf.te

    INFLUENCE OF EXTERNAL LOADS ON THIN FILM CRACKING (DRAFT)

    Get PDF
    ABSTRACT Cracking in thin films under the combined influence of residual stress and an external load is examined. An improved accuracy version of the existing solution for substrate cracking absent the external load is provided. A superposition scheme that uses the solution for substrate cracking and other existing published solutions is presented for the determination of the energy release rate. The superposition scheme is validated using finite element analysis, and conditions under which the superposition scheme is valid are discussed. Crack arrest is examined and two parameters that determine the possibility of crack arrest are identified. The influence of external loading on channelling behavior in the substrate is discussed

    Two Populations of Molecular Clouds in the Antennae Galaxies

    Full text link
    Super star clusters --- extremely massive clusters found predominately in starburst environments --- are essential building blocks in the formation of galaxies and thought to dominate star formation in the high-redshift universe. However, the transformation from molecular gas into these ultra-compact star clusters is not well understood. To study this process, we used the Submillimeter Array and the Plateau de Bure Interferometer to obtain high angular resolution (~1.5" or 160 pc) images of the Antennae overlap region in CO(2--1) to search for the molecular progenitors of the super star clusters. We resolve the molecular gas distribution into a large number of clouds, extending the differential cloud mass function down to a 5\sigma completeness limit of 3.8x10^5 M_sun. We identify a distinct break in the mass function around log M_mol/M_sun ~ 6.5, which separates the molecular clouds into two distinct populations. The smaller, less massive clouds reside in more quiescent areas in the region, while the larger, more massive clouds cluster around regions of intense star formation. A broken power-law fit to the mass function yields slopes of \alpha = -1.39+/-0.10 and \alpha = -1.44+/-0.14 for the low- and high-mass cloud population, well-matched to the mass function found for super star clusters in the Antennae galaxies. We find large velocity gradients and velocity dispersions at the locations of intense star formation, suggestive of compressive shocks. It is likely that these environmental factors contribute to the formation of the observed massive molecular clouds and super star clusters in the Antennae galaxies.Comment: 20 pages, 13 figures, accepted by Ap

    Optical detection of the Pictor A jet and tidal tail : evidence against an IC/CMB jet

    Get PDF
    Date of Acceptance: 12/06/2015New images of the FR II radio galaxy Pictor A from the Hubble Space Telescope reveal a previously undiscovered tidal tail, as well as a number of jet knots coinciding with a known X-ray and radio jet. The tidal tail is approximately 5″ wide (3 kpc projected), starting 18″ (12 kpc) from the center of Pictor A, and extends more than 90″ (60 kpc). The knots are part of a jet observed to be about 4′ (160 kpc) long, extending to a bright hotspot. These images are the first optical detections of this jet, and by extracting knot flux densities through three filters, we set constraints on emission models. While the radio and optical flux densities are usually explained by synchrotron emission, there are several emission mechanisms that might be used to explain the X-ray flux densities. Our data rule out Doppler-boosted inverse Compton scattering as a source of the high-energy emission. Instead, we find that the observed emission can be well described by synchrotron emission from electrons with a low-energy index (p ∼ 2) that dominates the radio band, while a high-energy index (p ∼ 3) is needed for the X-ray band and the transition occurs in the optical/infrared band. This model is consistent with a continuous electron injection scenario.Peer reviewedFinal Accepted Versio

    Comprehensive mapping of O-GlcNAc modification sites using a chemically cleavable tag

    Get PDF
    The post-translational modification of serine or threonine residues of proteins with a single N-acetylglucosamine monosaccharide (O-GlcNAcylation) is essential for cell survival and function. However, relatively few O-GlcNAc modification sites have been mapped due to the difficulty of enriching and detecting O-GlcNAcylated peptides from complex samples. Here we describe an improved approach to quantitatively label and enrich O-GlcNAcylated proteins for site identification. Chemoenzymatic labelling followed by copper(I)-catalysed azide–alkyne cycloaddition (CuAAC) installs a new mass spectrometry (MS)-compatible linker designed for facile purification of O-GlcNAcylated proteins from cell lysates. The linker also allows subsequent quantitative release of O-GlcNAcylated proteins for downstream MS analysis. We validate the approach by unambiguously identifying several established O-GlcNAc sites on the proteins α-crystallin and O-GlcNAc transferase (OGT), as well as discovering new, previously unreported sites on OGT. Notably, these novel sites on OGT lie in key functional domains of the protein, underscoring how this site identification method may reveal important biological insights into protein activity and regulation
    corecore