We report on general relativistic calculations of quasiequilibrium
configurations of binary neutron stars in circular orbits with zero vorticity.
These configurations are expected to represent realistic situations as opposed
to corotating configurations. The Einstein equations are solved under the
assumption of a conformally flat spatial 3-metric (Wilson-Mathews
approximation). The velocity field inside the stars is computed by solving an
elliptical equation for the velocity scalar potential. Results are presented
for sequences of constant baryon number (evolutionary sequences). Although the
central density decreases much less with the binary separation than in the
corotating case, it still decreases. Thus, no tendency is found for the stars
to individually collapse to black hole prior to merger.Comment: Minor corrections, improved figure, 5 pages, REVTeX, Phys. Rev. Lett.
in pres