393 research outputs found

    Application of Broad-Spectrum, Sequence-Based Pathogen Identification in an Urban Population

    Get PDF
    A broad spectrum detection platform that provides sequence level resolution of target regions would have a significant impact in public health, case management, and means of expanding our understanding of the etiology of diseases. A previously developed respiratory pathogen microarray (RPM v.1) demonstrated the capability of this platform for this purpose. This newly developed RPM v.1 was used to analyze 424 well-characterized nasal wash specimens from patients presenting with febrile respiratory illness in the Washington, D. C. metropolitan region. For each specimen, the RPM v.1 results were compared against composite reference assay (viral and bacterial culture and, where appropriate, RT-PCR/PCR) results. Across this panel, the RPM assay showed ≥98% overall agreement for all the organisms detected compared with reference methods. Additionally, the RPM v.1 results provide sequence information which allowed phylogenetic classification of circulating influenza A viruses in ∼250 clinical specimens, and allowed monitoring the genetic variation as well as antigenic variability prediction. Multiple pathogens (2–4) were detected in 58 specimens (13.7%) with notably increased abundances of respiratory colonizers (esp. S. pneumoniae) during viral infection. This first-ever comparison of a broad-spectrum viral and bacterial identification technology of this type against a large battery of conventional “gold standard” assays confirms the utility of the approach for both medical surveillance and investigations of complex etiologies of illness caused by respiratory co-infections

    Does the routine use of global coronary heart disease risk scores translate into clinical benefits or harms? A systematic review of the literature

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Guidelines now recommend routine assessment of global coronary heart disease (CHD) risk scores. We performed a systematic review to assess whether global CHD risk scores result in clinical benefits or harms.</p> <p>Methods</p> <p>We searched MEDLINE (1966 through June 13, 2007) for articles relevant to our review. Using predefined inclusion and exclusion criteria, we included studies of any design that provided physicians with global risk scores or allowed them to calculate scores themselves, and then measured clinical benefits and/or harms. Two reviewers reviewed potentially relevant studies for inclusion and resolved disagreement by consensus. Data from each article was then abstracted into an evidence table by one reviewer and the quality of evidence was assessed independently by two reviewers.</p> <p>Results</p> <p>11 studies met criteria for inclusion in our review. Six studies addressed clinical benefits and 5 addressed clinical harms. Six studies were rated as "fair" quality and the others were deemed "methodologically limited". Two fair quality studies showed that physician knowledge of global CHD risk is associated with increased prescription of cardiovascular drugs in high risk (but not all) patients. Two additional fair quality studies showed no effect on their primary outcomes, but one was underpowered and the other focused on prescribing of lifestyle changes, rather than drugs whose prescribing might be expected to be targeted by risk level. One of these aforementioned studies showed improved blood pressure in high-risk patients, but no improvement in the proportion of patients at high risk, perhaps due to the high proportion of participants with baseline risks significantly exceeding the risk threshold. Two fair quality studies found no evidence of harm from patient knowledge of global risk scores when they were accompanied by counseling, and optional or scheduled follow-up. Other studies were too methodologically limited to draw conclusions.</p> <p>Conclusion</p> <p>Our review provides preliminary evidence that physicians' knowledge of global CHD risk scores may translate into modestly increased prescribing of cardiovascular drugs and modest short-term reductions in CHD risk factors without clinical harm. Whether these results are replicable, and translate across other practice settings or into improved long-term CHD outcomes remains to be seen.</p

    A Scalable System for Production of Functional Pancreatic Progenitors from Human Embryonic Stem Cells

    Get PDF
    Development of a human embryonic stem cell (hESC)-based therapy for type 1 diabetes will require the translation of proof-of-principle concepts into a scalable, controlled, and regulated cell manufacturing process. We have previously demonstrated that hESC can be directed to differentiate into pancreatic progenitors that mature into functional glucose-responsive, insulin-secreting cells in vivo. In this study we describe hESC expansion and banking methods and a suspension-based differentiation system, which together underpin an integrated scalable manufacturing process for producing pancreatic progenitors. This system has been optimized for the CyT49 cell line. Accordingly, qualified large-scale single-cell master and working cGMP cell banks of CyT49 have been generated to provide a virtually unlimited starting resource for manufacturing. Upon thaw from these banks, we expanded CyT49 for two weeks in an adherent culture format that achieves 50–100 fold expansion per week. Undifferentiated CyT49 were then aggregated into clusters in dynamic rotational suspension culture, followed by differentiation en masse for two weeks with a four-stage protocol. Numerous scaled differentiation runs generated reproducible and defined population compositions highly enriched for pancreatic cell lineages, as shown by examining mRNA expression at each stage of differentiation and flow cytometry of the final population. Islet-like tissue containing glucose-responsive, insulin-secreting cells was generated upon implantation into mice. By four- to five-months post-engraftment, mature neo-pancreatic tissue was sufficient to protect against streptozotocin (STZ)-induced hyperglycemia. In summary, we have developed a tractable manufacturing process for the generation of functional pancreatic progenitors from hESC on a scale amenable to clinical entry

    Skin Lesions on Common Bottlenose Dolphins (Tursiops truncatus) from Three Sites in the Northwest Atlantic, USA

    Get PDF
    Skin disease occurs frequently in many cetacean species across the globe; methods to categorize lesions have relied on photo-identification (photo-id), stranding, and by-catch data. The current study used photo-id data from four sampling months during 2009 to estimate skin lesion prevalence and type occurring on bottlenose dolphins (Tursiops truncatus) from three sites along the southeast United States coast [Sarasota Bay, FL (SSB); near Brunswick and Sapelo Island, GA (BSG); and near Charleston, SC (CHS)]. The prevalence of lesions was highest among BSG dolphins (P = 0.587) and lowest in SSB (P = 0.380), and the overall prevalence was significantly different among all sites (p<0.0167). Logistic regression modeling revealed a significant reduction in the odds of lesion occurrence for increasing water temperatures (OR = 0.92; 95%CI:0.906–0.938) and a significantly increased odds of lesion occurrence for BSG dolphins (OR = 1.39; 95%CI:1.203–1.614). Approximately one-third of the lesioned dolphins from each site presented with multiple types, and population differences in lesion type occurrence were observed (p<0.05). Lesions on stranded dolphins were sampled to determine the etiology of different lesion types, which included three visually distinct samples positive for herpesvirus. Although generally considered non-fatal, skin disease may be indicative of animal health or exposure to anthropogenic or environmental threats, and photo-id data provide an efficient and cost-effective approach to document the occurrence of skin lesions in free-ranging populations

    Mastermind Mutations Generate a Unique Constellation of Midline Cells within the Drosophila CNS

    Get PDF
    Background: The Notch pathway functions repeatedly during the development of the central nervous system in metazoan organisms to control cell fate and regulate cell proliferation and asymmetric cell divisions. Within the Drosophila midline cell lineage, which bisects the two symmetrical halves of the central nervous system, Notch is required for initial cell specification and subsequent differentiation of many midline lineages. Methodology/Principal Findings: Here, we provide the first description of the role of the Notch co-factor, mastermind, in the central nervous system midline of Drosophila. Overall, zygotic mastermind mutations cause an increase in midline cell number and decrease in midline cell diversity. Compared to mutations in other components of the Notch signaling pathway, such as Notch itself and Delta, zygotic mutations in mastermind cause the production of a unique constellation of midline cell types. The major difference is that midline glia form normally in zygotic mastermind mutants, but not in Notch and Delta mutants. Moreover, during late embryogenesis, extra anterior midline glia survive in zygotic mastermind mutants compared to wild type embryos. Conclusions/Significance: This is an example of a mutation in a signaling pathway cofactor producing a distinct centra

    Poor performance of the rapid test for human brucellosis in health facilities in Kenya

    Get PDF
    Human brucellosis is considered to be an important but typically under-diagnosed cause of febrile illness in many low and middle-income countries. In Kenya, and throughout East Africa, laboratory diagnosis for the disease is based primarily on the febrile antigen Brucella agglutination test (FBAT), yet few studies of the diagnostic accuracy of this test exist. Assessment of the performance of the FBAT is essential for its appropriate clinical use, as well as for evaluating surveillance data reported by public health systems. To assess FBAT performance, we collected sera from people with symptoms compatible with brucellosis attending two health facilities in Busia County, Kenya. Sera were tested using the FBAT and results compared with those from the Rose Bengal Test (RBT), an assay with well-known performance characteristics. Positives on either test were confirmed using the classical serum agglutination test (SAT)-Coombs test combination and a rapid IgM/IgG lateral flow immunochromatography assay (LFA). A questionnaire focussing on known risk factors for exposure to Brucella spp. was also conducted, and relationships with FBAT positivity examined using logistic regression. Out of 825 recruited individuals, 162 (19.6%) were classified as positive using the FBAT. In contrast, only eight (1.0%) were positive using the RBT. Of the 162 FBAT positives, one (0.62%) had an atypical agglutination in SAT and three (1.9%) showed low Coombs titres. Out of 148 FBAT positive individuals tested using the LFA, five (3.4%) were IgM positive and none were IgG positive. Poor or no correlation was observed between FBAT results and most established risk factors for Brucella infection. We observed substantial disagreement between the FBAT and a number of well-known serological tests, with the majority of reactive FBAT results appearing to be false positives. Poor FBAT specificity, combined with a lack of confirmatory testing, strongly suggests overdiagnosis of brucellosis is common in this low prevalence setting. This is expected to have important economic impacts on affected patients subjected to the long and likely unnecessary courses of multiple antibiotics required for treatment of the disease

    Porcine Sialoadhesin (CD169/Siglec-1) Is an Endocytic Receptor that Allows Targeted Delivery of Toxins and Antigens to Macrophages

    Get PDF
    Sialoadhesin is exclusively expressed on specific subpopulations of macrophages. Since sialoadhesin-positive macrophages are involved in inflammatory autoimmune diseases, such as multiple sclerosis, and potentially in the generation of immune responses, targeted delivery of drugs, toxins or antigens via sialoadhesin-specific immunoconjugates may prove a useful therapeutic strategy. Originally, sialoadhesin was characterized as a lymphocyte adhesion molecule, though recently its involvement in internalization of sialic acid carrying pathogens was shown, suggesting that sialoadhesin is an endocytic receptor. In this report, we show that porcine sialoadhesin-specific antibodies and F(ab')2 fragments trigger sialoadhesin internalization, both in primary porcine macrophages and in cells expressing recombinant porcine sialoadhesin. Using chemical inhibitors, double immunofluorescence stainings and dominant-negative constructs, porcine sialoadhesin internalization was shown to be clathrin- and Eps15-dependent and to result in targeting to early endosomes but not lysosomes. Besides characterizing the sialoadhesin endocytosis mechanism, two sialoadhesin-specific immunoconjugates were evaluated. We observed that porcine sialoadhesin-specific immunotoxins efficiently kill sialoadhesin-expressing macrophages. Furthermore, porcine sialoadhesin-specific albumin immunoconjugates were shown to be internalized in macrophages and immunization with these immunoconjugates resulted in a rapid and robust induction of albumin-specific antibodies, this compared to immunization with albumin alone. Together, these data expand sialoadhesin functionality and show that it can function as an endocytic receptor, a feature that cannot only be misused by sialic acid carrying pathogens, but that may also be used for specific targeting of toxins or antigens to sialoadhesin-expressing macrophages
    corecore