82 research outputs found

    Polysaccharide Monoxygenases: Giving a Boost to Biofuel Production

    Get PDF
    In this issue of Structure, Li et al. present high resolution crystal structures of two fungal polysaccharide monoxygenases. Unexpectedly, they observe oxygen species bound at the active sites that inform on the chemistry that can be supported by these enzymes. Additionally, the organization of aromatic amino acids and glycosylation on the carbohydrate binding surfaces suggests that regiospecificity and cellulose orientation can be predicted

    Structures of MauG in complex with quinol and quinone MADH

    Get PDF
    MauG has been cocrystallized with methylamine dehydrogenase (MADH) with its TTQ cofactor in the o-quinol (TTQ(OQ)) and quinone (TTQ(OX)) forms and the structures of the resulting complexes have been solved. The TTQ(OQ) structure crystallized in either space group P2(1) or C2, while the TTQ(OX) structure crystallized in space group P1. The previously solved structure of MauG in complex with MADH bearing an incompletely formed TTQ cofactor (preMADH) also crystallized in space group P1, although with different unit-cell parameters. Despite the changes in crystal form, the structures are virtually identical, with only very minor changes at the protein-protein interface. The relevance of these structures with respect to the measured changes in affinity between MauG and various forms of MADH is discussed

    Diradical intermediate within the context of tryptophan tryptophylquinone biosynthesis

    Get PDF
    Despite the importance of tryptophan (Trp) radicals in biology, very few radicals have been trapped and characterized in a physiologically meaningful context. Here we demonstrate that the diheme enzyme MauG uses Trp radical chemistry to catalyze formation of a Trp-derived tryptophan tryptophylquinone cofactor on its substrate protein, premethylamine dehydrogenase. The unusual six-electron oxidation that results in tryptophan tryptophylquinone formation occurs in three discrete two-electron catalytic steps. Here the exact order of these oxidation steps in the processive six-electron biosynthetic reaction is determined, and reaction intermediates are structurally characterized. The intermediates observed in crystal structures are also verified in solution using mass spectrometry. Furthermore, an unprecedented Trp-derived diradical species on premethylamine dehydrogenase, which is an intermediate in the first two-electron step, is characterized using high-frequency and -field electron paramagnetic resonance spectroscopy and UV-visible absorbance spectroscopy. This work defines a unique mechanism for radical-mediated catalysis of a protein substrate, and has broad implications in the areas of applied biocatalysis and understanding of oxidative protein modification during oxidative stress

    Quaternary Structure Defines a Large Class of Amyloid-β Oligomers Neutralized by Sequestration

    Get PDF
    SummaryThe accumulation of amyloid-β (Aβ) as amyloid fibrils and toxic oligomers is an important step in the development of Alzheimer’s disease (AD). However, there are numerous potentially toxic oligomers and little is known about their neurological effects when generated in the living brain. Here we show that Aβ oligomers can be assigned to one of at least two classes (type 1 and type 2) based on their temporal, spatial, and structural relationships to amyloid fibrils. The type 2 oligomers are related to amyloid fibrils and represent the majority of oligomers generated in vivo, but they remain confined to the vicinity of amyloid plaques and do not impair cognition at levels relevant to AD. Type 1 oligomers are unrelated to amyloid fibrils and may have greater potential to cause global neural dysfunction in AD because they are dispersed. These results refine our understanding of the pathogenicity of Aβ oligomers in vivo

    The Role of Protein Crystallography in Defining the Mechanisms of Biogenesis and Catalysis in Copper Amine Oxidase

    Get PDF
    Copper amine oxidases (CAOs) are a ubiquitous group of enzymes that catalyze the conversion of primary amines to aldehydes coupled to the reduction of O2 to H2O2. These enzymes utilize a wide range of substrates from methylamine to polypeptides. Changes in CAO activity are correlated with a variety of human diseases, including diabetes mellitus, Alzheimer’s disease, and inflammatory disorders. CAOs contain a cofactor, 2,4,5-trihydroxyphenylalanine quinone (TPQ), that is required for catalytic activity and synthesized through the post-translational modification of a tyrosine residue within the CAO polypeptide. TPQ generation is a self-processing event only requiring the addition of oxygen and Cu(II) to the apoCAO. Thus, the CAO active site supports two very different reactions: TPQ synthesis, and the two electron oxidation of primary amines. Crystal structures are available from bacterial through to human sources, and have given insight into substrate preference, stereospecificity, and structural changes during biogenesis and catalysis. In particular both these processes have been studied in crystallo through the addition of native substrates. These latter studies enable intermediates during physiological turnover to be directly visualized, and demonstrate the power of this relatively recent development in protein crystallography

    Americans, Marketers, and the Internet: 1999-2012

    Full text link

    Posttranslational Biosynthesis Of The Protein-Derived Cofactor Tryptophan Tryptophylquinone

    No full text
    Methylamine dehydrogenase (MADH) catalyzes the oxidative deamination of methylamine to formaldehyde and ammonia. Tryptophan tryptophylquinone (TTQ) is the protein-derived cofactor of MADH required for this catalytic activity. TTQ is biosynthesized through the posttranslational modification of two tryptophan residues within MADH, during which the indole rings of two tryptophan side chains are cross-linked and two oxygen atoms are inserted into one of the indole rings. MauG is a c-type diheme enzyme that catalyzes the final three reactions in TTQ formation. In total, this is a six-electron oxidation process requiring three cycles of MauG-dependent two-electron oxidation events using either H2O2 or O2. The MauG redox form responsible for the catalytic activity is an unprecedented bis-FeIV species. The amino acids of MADH that are modified are ∼40 Å from the site where MauG binds oxygen, and the reaction proceeds by a hole hopping electron transfer mechanism. This review addresses these highly unusual aspects of the long-range catalytic reaction mediated by MauG. © 2013 by Annual Reviews. All rights reserved

    A Trp199Glu Maug Variant Reveals A Role For Trp199 Interactions With Pre-Methylamine Dehydrogenase During Tryptophan Tryptophylquinone Biosynthesis

    No full text
    MauG catalyzes posttranslational modifications of a methylamine dehydrogenase precursor (preMADH) to complete the biosynthesis of its protein-derived tryptophan tryptophylquinone (TTQ) cofactor. Trp199 is present at the site of interaction between MauG and preMADH and is critical to this process as it mediates hole hopping during the inter-protein electron transfer that is required for catalysis. Trp199 was converted to Glu and the structure and reactivity of the W199E/preMADH complex were characterized. The results reveal that the nature of residue 199 is also important for productive complex formation between preMADH and MauG. © 2013 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved
    • …
    corecore