30 research outputs found
Climate Change: Bees and Orchids Lose Touch
SummarySpring temperature increases could differentially affect flowering times and pollinator flight periods, leading to asynchrony and reduced pollination. A specialist orchid–bee study combining herbarium, museum and field data shows that bee flight dates are advancing faster than orchid flowering, which could lead to significant future uncoupling
Nectar Theft and Floral Ant-Repellence: A Link between Nectar Volume and Ant-Repellent Traits?
As flower visitors, ants rarely benefit a plant. They are poor pollinators, and can also disrupt pollination by deterring other flower visitors, or by stealing nectar. Some plant species therefore possess floral ant-repelling traits. But why do particular species have such traits when others do not? In a dry forest in Costa Rica, of 49 plant species around a third were ant-repellent at very close proximity to a common generalist ant species, usually via repellent pollen. Repellence was positively correlated with the presence of large nectar volumes. Repellent traits affected ant species differently, some influencing the behaviour of just a few species and others producing more generalised ant-repellence. Our results suggest that ant-repellent floral traits may often not be pleiotropic, but instead could have been selected for as a defence against ant thieves in plant species that invest in large volumes of nectar. This conclusion highlights to the importance of research into the cost of nectar production in future studies into ant-flower interactions
Estimating pollinator performance of visitors to the self-incompatible crop-plant Brassica rapa by single visit deposition and pollen germination: a comparison of methods
Estimating the pollen-deposition effectiveness of flower visitors is fundamental to understanding their performance as pollinators. While estimates of visitation rates, pollen loads, and single visit deposition (SVD) are all useful proxies for performance, and so help to reveal the relative effectiveness of different visitors, none take into account the breeding system of the plants, or the quality of pollen deposited. Here we compare the performance of visitors to the self-incompatible plant Brassica rapa (turnip) using SVD and pollen germination. We also report the first use of the staining of Brassica rapa stigma papilla cells (known to reveal a specific reaction to self-pollen) to compare self-pollen deposition between insect visitors. We found that most of the pollen grains deposited by insect visitors (and therefore counted by SVD methods) were non-germinating self-pollen. A smaller proportion of grains were outcrossed and so germinated. There was also a significant positive relationship between environmental conditions (wind speed) and pollen deposition, but not pollen germination. Both methods identified Bombus spp. as the best-performing visitors on turnip flowers, followed by Eristalis spp., whereas performance estimates for Episyrphus balteatus and ‘other hoverflies’ were no higher than controls for both methods. This study provides further insight into the methodology for estimating pollinator performance, especially in plants when only cross-pollen can germinate
Pollinator importance networks illustrate the crucial value of bees in a highly speciose plant community
Accurate predictions of pollination service delivery require a comprehensive understanding of the interactions between plants and flower visitors. To improve measurements of pollinator performance underlying such predictions, we surveyed visitation frequency, pollinator effectiveness (pollen deposition ability) and pollinator importance (the product of visitation frequency and effectiveness) of flower visitors in a diverse Mediterranean flower meadow. With these data we constructed the largest pollinator importance network to date and compared it with the corresponding visitation network to estimate the specialisation of the community with greater precision. Visitation frequencies at the community level were positively correlated with the amount of pollen deposited during individual visits, though rarely correlated at lower taxonomic resolution. Bees had the highest levels of pollinator effectiveness, with Apis, Andrena, Lasioglossum and Osmiini bees being the most effective visitors to a number of plant species. Bomblyiid flies were the most effective non-bee flower visitors. Predictions of community specialisation (H2?) were higher in the pollinator importance network than the visitation network, mirroring previous studies. Our results increase confidence in existing measures of pollinator redundancy at the community level using visitation data, while also providing detailed information on interaction quality at the plant species level
FLORAL SCENT IN A WHOLE-PLANT CONTEXT Floral volatiles controlling ant behaviour
Summary 1. Ants show complex interactions with plants, both facultative and mutualistic, ranging from grazers through seed predators and dispersers to herders of some herbivores and guards against others. But ants are rarely pollinators, and their visits to flowers may be detrimental to plant fitness. 2. Plants therefore have various strategies to control ant distributions, and restrict them to foliage rather than flowers. These 'filters' may involve physical barriers on or around flowers, or 'decoys and bribes' sited on the foliage (usually extrafloral nectaries -EFNs). Alternatively, volatile organic compounds (VOCs) are used as signals to control ant behaviour, attracting ants to leaves and ⁄ or deterring them from functional flowers. Some of the past evidence that flowers repel ants by VOCs has been equivocal and we describe the shortcomings of some experimental approaches, which involve behavioural tests in artificial conditions. 3. We review our previous study of myrmecophytic acacias, which used in situ experiments to show that volatiles derived from pollen can specifically and transiently deter ants during dehiscence, the effects being stronger in ant-guarded species and more effective on resident ants, both in African and Neotropical species. In these plants, repellence involves at least some volatiles that are known components of ant alarm pheromones, but are not repellent to beneficial bee visitors. 4. We also present new evidence of ant repellence by VOCs in temperate flowers, which is usually pollen-based and active on common European ants. We use these data to indicate that across a wide range of plants there is an apparent trade-off in ant-controlling filter strategies between the use of defensive floral volatiles and the alternatives of decoying EFNs or physical barriers
The JWST Discovery of the Triply-imaged Type Ia "Supernova H0pe" and Observations of the Galaxy Cluster PLCK G165.7+67.0
A Type Ia supernova (SN) at was discovered in James Webb Space
Telescope Near Infrared Camera imaging of the galaxy cluster PLCK G165.7+67.0
(G165; ). The SN is situated 1.5-2kpc from its host galaxy Arc 2 and
appears in three different locations as a result of gravitational lensing by
G165. These data can yield a value for Hubble's constant using time delays from
this multiply-imaged SN Ia that we call "SN H0pe." Over the entire field we
identified 21 image multiplicities, confirmed five of them using Near-Infrared
Spectrograph (NIRspec), and constructed a new lens model that gives a total
mass within 600kpc of ( M. The
photometry uncovered a galaxy overdensity at Arc 2's redshift. NIRSpec
confirmed six member galaxies, four of which surround Arc 2 with relative
velocity 900 km s and projected physical extent 33
kpc. Arc 2 dominates the stellar mass (
M), which is a factor of ten higher than other members of this
compact galaxy group. These other group members have specific star formation
rates (sSFR) of 2-260Gyr derived from the H-line flux corrected
for stellar absorption, dust extinction, and slit losses. Another group
centered on the dusty star forming galaxy Arc 1 is at . The total SFR
for the Arc 1 group ( M yr) translates to a supernova
rate of 1 SNe yr, suggesting that regular monitoring of this
cluster may yield additional SNe.Comment: 27 pages, submitted to Ap
Ants as flower visitors : floral ant-repellence and the impact of ant scent-marks on pollinator behaviour
As flower visitors, ants rarely benefit a plant, commonly disrupting pollination by deterring other flower visitors, or stealing nectar. This thesis examines three aspects of ant-flower interactions, focusing on the occurrence of floral traits that prevent disruption of pollination and a novel means by which ants may influence pollinator behaviour. To assess which types of plant species possess ant-repelling floral traits I carried out a survey of 49 Neotropical plant species. Around a third of these species were repellent to the common generalist ant Camponotus novograndensis (Formicinae). This repellence was positively correlated with large nectar volumes within individual flowers. It appears that there has been selection for floral ant-repellence as a defence against ant thieves in plant species that invest in large volumes of nectar. In some cases these repellent traits were effective against a wide range of ant species. However, in no plant species were predacious ants particularly repelled, indicating that there may be little selective pressure on non-ant-plants to defend potential pollinators from aggressive ants. To investigate the importance of coevolution in determining the effectiveness of ant-repellents, a small but diverse range of Mediterranean plant species were tested with the invasive nectar thieving ant Linepithema humile (Dolichoderinae) and the native but non-nectar thieving ant Messor bouvieri (Myrmecinae). Responses of both ant species to floral traits were very similar. The ability of some plants to restrict access to ant species with which they have no evolutionary history may help to reduce the impact invasive species, as nectar thieves, have on plant-pollinator interactions. It is reported that flowers recently visited by bees and hoverflies may be rejected for a period of time by subsequent bee visitors through the detection of scent-marks. Nectar-thieving ants could potentially influence the foraging decisions of bees in a similar way if they come to associate ant trail pheromones or footprint hydrocarbons with poor reward levels. However, my empirical work found no differences were found in bee visitation behaviour between flowers of Digitalis pupurea (Plantaginaceae), Bupleurum fruticosum (Apiaceae) or Brassica juncea (Brassicaceae) that had been in contact with ants and control flowers. Ant-attendance at flowers of these species may not reduce reward levels sufficiently to make it worthwhile for bees to incorporate ant scent-marks into foraging decisions. Investigations like these into the interactions between ants, flowers and other flower visitors are essential if we hope to understand the part ants play in pollination ecology, and determine how ants have helped shape floral evolution.EThOS - Electronic Theses Online ServiceGBUnited Kingdo