1,070 research outputs found
Hochvernetzte Poyethylene in der Hüftendoprothetik
Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG geförderten) Allianz- bzw. Nationallizenz frei zugänglich.This publication is with permission of the rights owner freely accessible due to an Alliance licence and a national licence (funded by the DFG, German Research Foundation) respectively.Die Notwendigkeit künstlicher Hüftgelenke nimmt mit dem steigenden Durchschnittsalter der Bevölkerung zu. Etwa 0,1% der Bevölkerung der Welt mit „westlicher" Lebensweise benötigt ein künstliches Hüftgelenk. Die derzeit verwendeten Werkstoffe in der Hüftendoprothetik besitzen, trotz stetiger Verbesserungen, immer noch zu hohe Abriebswerte. Somit ist das Hauptziel der heutigen Forschung über Werkstoffe für die Endoprothetik, Reibungsparmer zu finden, die über einen langfristigen Zeitraum weniger Verschleiß aufweisen, bei gleichzeitiger Biokompatibilität. Derzeit ist häufig von XPE (hochvernetztes UHMW-PE) die Rede. Die sehr guten Abriebswerte von XPE geben Anlaß zu Hoffnung, ein geeignetes Material gefunden zu haben. Aber wie sieht es mit den anderen Eigenschaften aus? Unterschiedlichste Herstellungs- und Prüfmethoden erschweren den direkten Vergleich der Eigenschaften. XPE kann entweder durch Bestrahlung von UHMW-PE hergestellt werden, oder durch chemische Reaktionen mittels organischen Peroxiden. Bei der Bestrahlung können entweder Gammastrahlen oder Elektronenstrahlen zum Einsatz kommen. Die chemische Herstellung spielt im Moment noch keine große Rolle und wird deshalb im Folgenden nicht näher behandelt. In dieser Arbeit wurde versucht, aus bereits unternommenen Studien Tendenzen ableiten zu können, ob XPE den Erwartungen entspricht
Radium single-ion optical clock
We explore the potential of the electric quadrupole transitions
7s\,^2S_{1/2} - 6d\,^2D_{3/2}, 6d\,^2D_{5/2} in radium isotopes as
single-ion optical frequency standards. The frequency shifts of the clock
transitions due to external fields and the corresponding uncertainties are
calculated. Several competitive Ra candidates with 223 - 229 are
identified. In particular, we show that the transition
7s\,^2S_{1/2}\,(F=2,m_F=0) - 6d\,^2D_{3/2}\,(F=0,m_F=0) at 828 nm in
Ra, with no linear Zeeman and electric quadrupole shifts, stands
out as a relatively simple case, which could be exploited as a compact, robust,
and low-cost atomic clock operating at a fractional frequency uncertainty of
. With more experimental effort, the Ra clocks
could be pushed to a projected performance reaching the level.Comment: 20 pages, 1 figur
Preference of Xenopus laevis for different housing conditions
Since the European frogs (Rana spp.) have been included in the German endangered species regulations, Xenapus Laevis (South African Clawed Frog) is being used increasingly in animal research and in teaching. In this study, the preference ofX. laevis for different housing conditions were examined. X. laevis preferred dark backgrounds, a water temperature between 20C-22C and the deeper parts of the test basin Red earthenware pipe was accepted as cover transparent pipe was not. The frogs avoided areas illuminated with more than 200 lux
Rigorous results on spontaneous symmetry breaking in a one-dimensional driven particle system
We study spontaneous symmetry breaking in a one-dimensional driven
two-species stochastic cellular automaton with parallel sublattice update and
open boundaries. The dynamics are symmetric with respect to interchange of
particles. Starting from an empty initial lattice, the system enters a symmetry
broken state after some time T_1 through an amplification loop of initial
fluctuations. It remains in the symmetry broken state for a time T_2 through a
traffic jam effect. Applying a simple martingale argument, we obtain rigorous
asymptotic estimates for the expected times ~ L ln(L) and ln() ~ L,
where L is the system size. The actual value of T_1 depends strongly on the
initial fluctuation in the amplification loop. Numerical simulations suggest
that T_2 is exponentially distributed with a mean that grows exponentially in
system size. For the phase transition line we argue and confirm by simulations
that the flipping time between sign changes of the difference of particle
numbers approaches an algebraic distribution as the system size tends to
infinity.Comment: 23 pages, 7 figure
The political economy of international factor mobility
We model the endogenous determination of policy towards international factor mobility. In a
common agency setting, domestic interest groups bid for protection from the government and the
incumbent politicians maximize a welfare function that depends both on domestic voters\u2019 welfare
and contributions collected. We characterize equilibrium policies in the price space and show how the degree of complementarity among inputs determines the outcome. We establish a similar result for quotas, allowing for partial rent capturing. For the strategic environment under consideration, we also establish a general equivalence result between tariffs and quotas if capturing is complete
Dynamic correlation functions and Boltzmann Langevin approach for driven one dimensional lattice gas
We study the dynamics of the totally asymmetric exclusion process with open
boundaries by phenomenological theories complemented by extensive Monte-Carlo
simulations. Upon combining domain wall theory with a kinetic approach known as
Boltzmann-Langevin theory we are able to give a complete qualitative picture of
the dynamics in the low and high density regime and at the corresponding phase
boundary. At the coexistence line between high and low density phases we
observe a time scale separation between local density fluctuations and
collective domain wall motion, which are well accounted for by the
Boltzmann-Langevin and domain wall theory, respectively. We present Monte-Carlo
data for the correlation functions and power spectra in the full parameter
range of the model.Comment: 10 pages, 9 figure
Phase-separation transition in one-dimensional driven models
A class of models of two-species driven diffusive systems which is shown to exhibit phase separation in d=1 dimensions is introduced. Unlike previously studied models exhibiting similar phenomena, here the relative density of the two species is fluctuating within the macroscopic domain of the phase separtated state. The nature of the phase transition from the homogeneous to the phase-separated state is discussed in view of a recently introduced criterion for phase separation in one-dimensional driven systems
Aspects of Cooling at the TRIP Facility
The TriP facility at KVI is dedicated to provide short lived radioactive
isotopes at low kinetic energies to users. It comprised different cooling
schemes for a variety of energy ranges, from GeV down to the neV scale. The
isotopes are produced using beam of the AGOR cyclotron at KVI. They are
separated from the primary beam by a magnetic separator. A crucial part of such
a facility is the ability to stop and extract isotopes into a low energy
beamline which guides them to the experiment. In particular we are
investigating stopping in matter and buffer gases. After the extraction the
isotopes can be stored in neutral atoms or ion traps for experiments. Our
research includes precision studies of nuclear -decay through
- momentum correlations as well as searches for permanent electric
dipole moments in heavy atomic systems like radium. Such experiments offer a
large potential for discovering new physics.Comment: COOL05 Workshop, Galena, Il, USA, 18-23. Sept. 2005, 5 pages, 3
figure
Изучение методики статистической обработки экспериментальных данных
Методические указания к лабораторной работе № 1 «Изучение методики
статистической обработки экспериментальных данных » по разделу
«Физические основы механики» курса физики для студентов всех
специальностей
Spontaneous Symmetry Breaking in a Non-Conserving Two-Species Driven Model
A two species particle model on an open chain with dynamics which is
non-conserving in the bulk is introduced. The dynamical rules which define the
model obey a symmetry between the two species. The model exhibits a rich
behavior which includes spontaneous symmetry breaking and localized shocks. The
phase diagram in several regions of parameter space is calculated within
mean-field approximation, and compared with Monte-Carlo simulations. In the
limit where fluctuations in the number of particles in the system are taken to
zero, an exact solution is obtained. We present and analyze a physical picture
which serves to explain the different phases of the model
- …