2,457 research outputs found
From Observers to Participants: Joining the Scientific Community
In this essay, we have integrated the voices of our mentors and students to explore 45 years of undergraduate research experiences and their role in shaping our scientific community. In considering our collective experiences, we see undergraduate involvement in research as a rich source of community development, one that has both touched our lives and influenced our teaching
Social network analysis as a tool to inform anguillid eel conservation and management
Eel Management Plans demand European silver eel (Anguilla anguilla) escapement to the sea of at least 40% of that expected historically in the absence of human impacts. Landlocked lentic waterbodies, such as drinking water reservoirs, host substantial numbers of eel, which could represent a significant contribution to catchment-based conservation targets. To optimize netting strategies for eel management policies, information on their aggregation behaviour is currently needed but lacking. We performed a fine-scale acoustic tracking study to monitor the movements of 86 European eel in a UK reservoir. Social network sampling and sensitivity analyses were used to assess whether eel aggregate at scales relevant for current capture techniques. European eel were found to aggregate at spatial and temporal scales of 50 m and 2 days, respectively, which complements current capture methodologies and recommendations. Aggregations were not driven by fixed resources, indicating that other factors, such as sociality, may drive aggregation behaviour. Results also show that current netting practices could be optimized by increasing netting lengths from 50 to 80 m. In addition to aiding conservation and management protocols, these results provide an ecological foundation for exploring the role of social behaviour in this Critically Endangered species
A Precise Water Abundance Measurement for the Hot Jupiter WASP-43b
The water abundance in a planetary atmosphere provides a key constraint on
the planet's primordial origins because water ice is expected to play an
important role in the core accretion model of planet formation. However, the
water content of the Solar System giant planets is not well known because water
is sequestered in clouds deep in their atmospheres. By contrast, short-period
exoplanets have such high temperatures that their atmospheres have water in the
gas phase, making it possible to measure the water abundance for these objects.
We present a precise determination of the water abundance in the atmosphere of
the 2 short-period exoplanet WASP-43b based on thermal
emission and transmission spectroscopy measurements obtained with the Hubble
Space Telescope. We find the water content is consistent with the value
expected in a solar composition gas at planetary temperatures (0.4-3.5x solar
at 1 confidence). The metallicity of WASP-43b's atmosphere suggested
by this result extends the trend observed in the Solar System of lower metal
enrichment for higher planet masses.Comment: Accepted to ApJL; this version contains three supplemental figures
that are not included in the published paper. See also our companion paper
"Thermal structure of an exoplanet atmosphere from phase-resolved emission
spectroscopy" by Stevenson et a
Microbial Reduction of U(VI) under Alkaline Conditions: Implications for Radioactive Waste Geodisposal
Although there is consensus that microorganisms significantly influence uranium speciation and mobility in the subsurface under circumneutral conditions, microbiologically mediated U(VI) redox cycling under alkaline conditions relevant to the geological disposal of cementitious intermediate level radioactive waste, remains unexplored. Here, we describe microcosm experiments that investigate the biogeochemical fate of U(VI) at pH 10–10.5, using sediments from a legacy lime working site, stimulated with an added electron donor, and incubated in the presence and absence of added Fe(III) as ferrihydrite. In systems without added Fe(III), partial U(VI) reduction occurred, forming a U(IV)-bearing non-uraninite phase which underwent reoxidation in the presence of air (O2) and to some extent nitrate. By contrast, in the presence of added Fe(III), U(VI) was first removed from solution by sorption to the Fe(III) mineral, followed by bioreduction and (bio)magnetite formation coupled to formation of a complex U(IV)-bearing phase with uraninite present, which also underwent air (O2) and partial nitrate reoxidation. 16S rRNA gene pyrosequencing showed that Gram-positive bacteria affiliated with the Firmicutes and Bacteroidetes dominated in the post-reduction sediments. These data provide the first insights into uranium biogeochemistry at high pH and have significant implications for the long-term fate of uranium in geological disposal in both engineered barrier systems and the alkaline, chemically disturbed geosphere
The Economic Impact of Transvenous Defibrillation Lead Systems
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/72437/1/j.1540-8159.1994.tb02379.x.pd
Educational Attainment Moderates the Association Between Hippocampal Volumes and Memory Performances in Healthy Older Adults
Objective: To examine whether educational attainment, as a proxy of cognitive reserve, moderated the association between hippocampal volumes and episodic verbal memory performances in healthy older adults.Methods: Data from 76 community dwelling older adults were included in the present study. Measures of hippocampal volumes (total, left, and right) were obtained using FreeSurfer software. Immediate and delayed verbal recall scores were derived from performances on the California Verbal Learning Test-Second Edition and the Wechsler Memory Scale- Third Edition. Educational attainment was defined by years of education. Linear regression analyses were performed using immediate and delayed recall as dependent variables and hippocampal volumes, years of education, and their interaction terms as independent variables. All analyses were controlled for age, sex, depression, and health status.Results: Total and left Hippocampal volumes had a positive main effect on delayed recall only. Additionally, the interaction between total, left, and right hippocampal volumes and education was a significant predictor for delayed recall performance but not for immediate recall performance. The positive association between hippocampal volumes and delayed recall was greatest in those with more years of education.Conclusion: Larger hippocampal volumes were associated with better delayed verbal recall and the effect on delayed recall was greatest in those with more years of education. Having higher levels of education, or cognitive reserve, may enable individuals to capitalize on greater structural integrity in the hippocampus to support delayed recall in old age. However, longitudinal research is needed to investigate the directionality of these associations
Biogeochemical Cycling of 99Tc in Alkaline Sediments
99Tc will be present in significant quantities in radioactive wastes including intermediate-level waste (ILW). The internationally favored concept for disposing of higher activity radioactive wastes including ILW is via deep geological disposal in an underground engineered facility located ∼200–1000 m deep. Typically, in the deep geological disposal environment, the subsurface will be saturated, cement will be used extensively as an engineering material, and iron will be ubiquitous. This means that understanding Tc biogeochemistry in high pH, cementitious environments is important to underpin safety case development. Here, alkaline sediment microcosms (pH 10) were incubated under anoxic conditions under “no added Fe(III)” and “with added Fe(III)” conditions (added as ferrihydrite) at three Tc concentrations (10–11, 10–6, and 10–4 mol L–1). In the 10–6 mol L–1 Tc experiments with no added Fe(III), ∼35% Tc(VII) removal occurred during bioreduction. Solvent extraction of the residual solution phase indicated that ∼75% of Tc was present as Tc(IV), potentially as colloids. In both biologically active and sterile control experiments with added Fe(III), Fe(II) formed during bioreduction and >90% Tc was removed from the solution, most likely due to abiotic reduction mediated by Fe(II). X-ray absorption spectroscopy (XAS) showed that in bioreduced sediments, Tc was present as hydrous TcO2-like phases, with some evidence for an Fe association. When reduced sediments with added Fe(III) were air oxidized, there was a significant loss of Fe(II) over 1 month (∼50%), yet this was coupled to only modest Tc remobilization (∼25%). Here, XAS analysis suggested that with air oxidation, partial incorporation of Tc(IV) into newly forming Fe oxyhydr(oxide) minerals may be occurring. These data suggest that in Fe-rich, alkaline environments, biologically mediated processes may limit Tc mobility.Peer reviewe
Genetic differentiation in the threatened soft coral Dendronephthya australis in temperate eastern Australia
The endangered soft coral Dendronephthya australis faces substantial population decreases in central eastern Australian waters. Despite uncertainty about the cause of these declines, the population genetics of the species has not been investigated. Genetic analysis suggests that D. australis is a single species within the family Nephtheidae, confirming identifications based on morphological characteristics only. Soft coral colonies were distributed from Seahorse Gardens in Port Stephens to Jervis Bay in temperate Australian waters, a distance of some 400 km. Genetic differentiation was observed along this distribution using SNP genotyping. Relatively high levels of genetic differentiation were observed between Jervis Bay and the other sites, indicating limited gene flow between this location and others. Moreover, the genetic distinctiveness, low diversity and heterozygote excess at this southern location suggested that it was subjected to a recent population decline and genetic bottleneck. Colonies at Seahorse Gardens and Ettalong, approximately 150 km south of Seahorse Gardens, displayed greater genetic diversity, making these sites more likely to host ancestral populations and to have acted as refugia. Recent substantial decreases in population sizes at these locations are particularly concerning, and these locations require immediate conservation attention
Selective leaching of copper and zinc from primary ores and secondary mineral residues using biogenic ammonia
With the number of easily accessible ores depleting, alternate primary and secondary sources are required to meet the increasing demand of economically important metals. Whilst highly abundant, these materials are of lower grade with respect to traditional ores, thus highly selective and sustainable metal extraction technologies are needed to reduce processing costs. Here, we investigated the metal leaching potential of biogenic ammonia produced by a ureolytic strain of Lysinibacillus sphaericus on eight primary and secondary materials, comprised of mining and metallurgical residues, sludges and automotive shredder residues (ASR). For the majority of materials, moderate to high yields (30–70%) and very high selectivity (>97% against iron) of copper and zinc were obtained with 1 mol L−1 total ammonia. Optimal leaching was achieved and further refined for the ASR in a two-step indirect leaching system with biogenic ammonia. Copper leaching was the result of local corrosion and differences in leaching against the synthetic (NH4)2CO3 control could be accounted for by pH shifts from microbial metabolism, subsequently altering free NH3 required for coordination. These results provide important findings for future sustainable metal recovery technologies from secondary materials.This work was conducted under the financial support of the Strategic Initiative Materials in Flanders (SIM) (SBO-SMART: Sustainable Metal Extraction from Tailings, grant no. HBC.2016.0456) and the European Union’s Horizon 2020 research and innovation programme, Metal Re-covery from Low-Grade Ores and Wastes Plus (METGROW+, grant no. 690088) . FV acknowledges support by the Flemish Agency for Inno-vation and Entrepreneurship (Vlaio) via a Baekeland PhD fellowship (HBC.2017.0224) and by the Research & Development Umicore Group. We would like to thank Pieter Ostermeyer and Karel Folens for assis-tance with thermodynamic modelling and CMET and ECOCHEM group members and SMART/METGROW+partners for valuable discussions throughout the projec
Assertion, Uniqueness and Epistemic Hypocrisy
Pascal Engel (2008) has insisted that a number of notable strategies for rejecting the knowledge norm of assertion are put forward on the basis of the wrong kinds of reasons. A central aim of this paper will be to establish the contrast point: I argue that one very familiar strategy for defending the knowledge norm of assertion—viz., that it is claimed to do better in various respects than its competitors (e.g. the justification and the truth norms)— relies on a presupposition that is shown to be ultimately under motivated. That presupposition is the uniqueness thesis—that there is a unique epistemic rule for assertion, and that such a rule
will govern assertions uniformly. In particular, the strategy I shall take here will be to challenge the sufficiency leg of the knowledge norm in a way that at the same time counts against Williamson’s (2000) own rationale for the uniqueness thesis. However, rather than to challenge the sufficiency leg of the knowledge norm via the familiar style of ‘expert opinion’ and, more generally, ‘second-hand knowledge’ cases (e.g. Lackey (2008)), a strategy that has recently been called into question by Benton (2014), I’ll instead advance a very different line of argument against the sufficiency thesis, one which turns on a phenomenon I call epistemic hypocrisy
- …