683 research outputs found

    Predicting Neutron Production from Cosmic-ray Muons

    Get PDF
    Fast neutrons from cosmic-ray muons are an important background to underground low energy experiments. The estimate of such background is often hampered by the difficulty of measuring and calculating neutron production with sufficient accuracy. Indeed substantial disagreement exists between the different analytical calculations performed so far, while data reported by different experiments is not always consistent. We discuss a new unified approach to estimate the neutron yield, the energy spectrum, the multiplicity and the angular distribution from cosmic muons using the Monte Carlo simulation package FLUKA and show that it gives a good description of most of the existing measurements once the appropriate corrections have been applied.Comment: 8 pages, 7 figure

    Phonon anomalies and electron-phonon interaction in RuSr_2GdCu_2O_8 ferromagnetic superconductor: Evidence from infrared conductivity

    Full text link
    Critical behavior of the infrared reflectivity of RuSr_2GdCu_2O_8 ceramics is observed near the superconducting T_{SC} = 45 K and magnetic T_M = 133 K transition temperatures. The optical conductivity reveals the typical features of the c-axis optical conductivity of strongly underdoped multilayer superconducting cuprates. The transformation of the Cu-O bending mode at 288 cm^{-1} to a broad absorption peak at the temperatures between T^* = 90 K and T_{SC} is clearly observed, and is accompanied by the suppression of spectral weight at low frequencies. The correlated shifts to lower frequencies of the Ru-related phonon mode at 190 cm^{-1} and the mid-IR band at 4800 cm^{-1} on decreasing temperature below T_M are observed. It provides experimental evidence in favor of strong electron-phonon coupling of the charge carriers in the Ru-O layers which critically depends on the Ru core spin alignment. The underdoped character of the superconductor is explained by strong hole depletion of the CuO_2 planes caused by the charge carrier self-trapping at the Ru moments.Comment: 11 pages incl. 5 figures, submitted to PR

    Diurnal Differences in Risk of Cardiac Arrhythmias during Spontaneous Hypoglycemia in Young People with Type 1 Diabetes

    Get PDF
    OBJECTIVE Hypoglycemia may exert proarrhythmogenic effects on the heart via sympathoadrenal stimulation and hypokalemia. Hypoglycemia-induced cardiac dysrhythmias are linked to the “dead-in-bed syndrome,” a rare but devastating condition. We examined the effect of nocturnal and daytime clinical hypoglycemia on electrocardiogram (ECG) in young people with type 1 diabetes. RESEARCH DESIGN AND METHODS Thirty-seven individuals with type 1 diabetes underwent 96 h of simultaneous ambulatory ECG and blinded continuous interstitial glucose monitoring (CGM) while symptomatic hypoglycemia was recorded. Frequency of arrhythmias, heart rate variability, and cardiac repolarization were measured during hypoglycemia and compared with time-matched euglycemia during night and day. RESULTS A total of 2,395 h of simultaneous ECG and CGM recordings were obtained; 159 h were designated hypoglycemia and 1,355 h euglycemia. A median duration of nocturnal hypoglycemia of 60 min (interquartile range 40–135) was longer than daytime hypoglycemia of 44 min (30–70) (P = 0.020). Only 24.1% of nocturnal and 51.0% of daytime episodes were symptomatic. Bradycardia was more frequent during nocturnal hypoglycemia compared with matched euglycemia (incident rate ratio [IRR] 6.44 [95% CI 6.26, 6.63], P < 0.001). During daytime hypoglycemia, bradycardia was less frequent (IRR 0.023 [95% CI 0.002, 0.26], P = 0.002) and atrial ectopics more frequent (IRR 2.29 [95% CI 1.19, 4.39], P = 0.013). Prolonged QTc, T-peak to T-end interval duration, and decreased T-wave symmetry were detected during nocturnal and daytime hypoglycemia. CONCLUSIONS Asymptomatic hypoglycemia was common. We identified differences in arrhythmic risk and cardiac repolarization during nocturnal versus daytime hypoglycemia in young adults with type 1 diabetes. Our data provide further evidence that hypoglycemia is proarrhythmogenic

    Do Seasonal Glucocorticoid Changes Depend on Reproductive Investment? A Comparative Approach in Birds

    Get PDF
    Animals go through different life history stages such as reproduction, moult, or migration, of which some are more energy-demanding than others. Baseline concentrations of glucocorticoid hormones increase during moderate, predictable challenges and thus are expected to be higher when seasonal energy demands increase, such as during reproduction. By contrast, stress-induced glucocorticoids prioritize a survival mode that includes reproductive inhibition. Thus, many species down-regulate stress-induced glucocorticoid concentrations during the breeding season. Interspecific variation in glucocorticoid levels during reproduction has been successfully mapped onto reproductive investment, with species investing strongly in current reproduction (fast pace of life) showing higher baseline and lower stress-induced glucocorticoid concentrations than species that prioritize future reproduction over current attempts (slow pace of life). Here we test the >glucocorticoid seasonal plasticity hypothesis>, in which we propose that interspecific variation in seasonal changes in glucocorticoid concentrations from the non-breeding to the breeding season will be related to the degree of reproductive investment (and thus pace of life). We extracted population means for baseline (for 54 species) and stress-induced glucocorticoids (for 32 species) for the breeding and the non-breeding seasons from the database >HormoneBase>, also calculating seasonal glucocorticoid changes. We focused on birds because this group offered the largest sample size. Using phylogenetic comparative methods, we first showed that species differed consistently in both average glucocorticoid concentrations and their changes between the two seasons, while controlling for sex, latitude, and hemisphere. Second, as predicted seasonal changes in baseline glucocorticoids were explained by clutch size (our proxy for reproductive investment), with species laying larger clutches showing a greater increase during the breeding season-especially in passerine species. In contrast, changes in seasonal stress-induced levels were not explained by clutch size, but sample sizes were more limited. Our findings highlight that seasonal changes in baseline glucocorticoids are associated with a species' reproductive investment, representing an overlooked physiological trait that may underlie the pace of life

    Exact results for hydrogen recombination on dust grain surfaces

    Full text link
    The recombination of hydrogen in the interstellar medium, taking place on surfaces of microscopic dust grains, is an essential process in the evolution of chemical complexity in interstellar clouds. The H_2 formation process has been studied theoretically, and in recent years also by laboratory experiments. The experimental results were analyzed using a rate equation model. The parameters of the surface, that are relevant to H_2 formation, were obtained and used in order to calculate the recombination rate under interstellar conditions. However, it turned out that due to the microscopic size of the dust grains and the low density of H atoms, the rate equations may not always apply. A master equation approach that provides a good description of the H_2 formation process was proposed. It takes into account both the discrete nature of the H atoms and the fluctuations in the number of atoms on a grain. In this paper we present a comprehensive analysis of the H_2 formation process, under steady state conditions, using an exact solution of the master equation. This solution provides an exact result for the hydrogen recombination rate and its dependence on the flux, the surface temperature and the grain size. The results are compared with those obtained from the rate equations. The relevant length scales in the problem are identified and the parameter space is divided into two domains. One domain, characterized by first order kinetics, exhibits high efficiency of H_2 formation. In the other domain, characterized by second order kinetics, the efficiency of H_2 formation is low. In each of these domains we identify the range of parameters in which, the rate equations do not account correctly for the recombination rate. and the master equation is needed.Comment: 23 pages + 8 figure

    BAs and boride III-V alloys

    Full text link
    Boron arsenide, the typically-ignored member of the III-V arsenide series BAs-AlAs-GaAs-InAs is found to resemble silicon electronically: its Gamma conduction band minimum is p-like (Gamma_15), not s-like (Gamma_1c), it has an X_1c-like indirect band gap, and its bond charge is distributed almost equally on the two atoms in the unit cell, exhibiting nearly perfect covalency. The reasons for these are tracked down to the anomalously low atomic p orbital energy in the boron and to the unusually strong s-s repulsion in BAs relative to most other III-V compounds. We find unexpected valence band offsets of BAs with respect to GaAs and AlAs. The valence band maximum (VBM) of BAs is significantly higher than that of AlAs, despite the much smaller bond length of BAs, and the VBM of GaAs is only slightly higher than in BAs. These effects result from the unusually strong mixing of the cation and anion states at the VBM. For the BAs-GaAs alloys, we find (i) a relatively small (~3.5 eV) and composition-independent band gap bowing. This means that while addition of small amounts of nitrogen to GaAs lowers the gap, addition of small amounts of boron to GaAs raises the gap (ii) boron ``semi-localized'' states in the conduction band (similar to those in GaN-GaAs alloys), and (iii) bulk mixing enthalpies which are smaller than in GaN-GaAs alloys. The unique features of boride III-V alloys offer new opportunities in band gap engineering.Comment: 18 pages, 14 figures, 6 tables, 61 references. Accepted for publication in Phys. Rev. B. Scheduled to appear Oct. 15 200

    QED3 theory of underdoped high temperature superconductors

    Full text link
    Low-energy theory of d-wave quasiparticles coupled to fluctuating vortex loops that describes the loss of phase coherence in a two dimensional d-wave superconductor at T=0 is derived. The theory has the form of 2+1 dimensional quantum electrodynamics (QED3), and is proposed as an effective description of the T=0 superconductor-insulator transition in underdoped cuprates. The coupling constant ("charge") in this theory is proportional to the dual order parameter of the XY model, which is assumed to be describing the quantum fluctuations of the phase of the superconducting order parameter. The principal result is that the destruction of phase coherence in d-wave superconductors typically, and immediately, leads to antiferromagnetism. The transition can be understood in terms of the spontaneous breaking of an approximate "chiral" SU(2) symmetry, which may be discerned at low enough energies in the standard d-wave superconductor. The mechanism of the symmetry breaking is analogous to the dynamical mass generation in the QED3, with the "mass" here being proportional to staggered magnetization. Other insulating phases that break chiral symmetry include the translationally invariant "d+ip" and "d+is" insulators, and various one dimensional charge-density and spin-density waves. The theory offers an explanation for the rounded d-wave-like dispersion seen in ARPES experiments on Ca2CuO2Cl2 (F. Ronning et. al., Science 282, 2067 (1998)).Comment: Revtex, 20 pages, 5 figures; this is a much extended follow-up to the Phys. Rev. Lett. vol.88, 047006 (2002) (cond-mat/0110188); improved presentation, many additional explanations, comments, and references added, sec. IV rewritten. Final version, to appear in Phys. Rev.

    Can starling eggs be useful as a biomonitoring tool to study organohalogenated contaminants on a worldwide scale

    Get PDF
    Large-scale international monitoring studies are important to assess emission patterns and environmental distributions of organohalogenated contaminants (OHCs) on a worldwide scale. In this study, the presence of OHCs was investigated on three continents (Europe, North America and Australasia), using eggs of starlings (Sturnus vulgaris and Sturnus unicolor) to assess their suitability for large-scale monitoring studies. To the best of our knowledge, this is the first study using bird eggs of the same species as a biomonitor for OHCs on an intercontinental scale. We found significant differences in OHC concentrations of the eggs among sampling locations, except for hexachlorocyclohexanes (HCHs). Mean concentrations of sum polychlorinated biphenyls (PCBs) in eggs ranged from 78 ± 26 ng/g lipid weight (lw) in Australia to 2900 ± 1300 ng/g lw in the United States. The PCB profile was dominated by CB 153 and CB 138 in all locations, except for New Zealand, where the contribution of CB 95, CB 101 and CB 149 was also high. The highest mean sum polybrominated diphenyl ether (PBDE) concentrations were found in Canada (4400 ± 830 ng/g lw), while the lowest mean PBDE concentrations were measured in Spain (3.7 ± 0.1 ng/g lw). The PBDE profile in starling eggs was dominated by BDE 47 and BDE 99 in all countries, but in Belgium, the higher brominated PBDEs had a higher contribution compared to other countries. For the organochlorine pesticides (OCPs), dichlorodiphenyltrichloroethanes (DDTs) ranged from 110 ± 16 ng/g lw in France to 17,000 ± 3400 ng/g lw in New Zealand, while HCHs and hexachlorobenzene were generally in low concentrations in all sampling locations. Chlordanes were remarkably high in eggs from the United States (2500 ± 1300 ng/g lw). The OCP profile in all countries was largely dominated by p,p′-DDE. In general, the worldwide trends we observed in starling eggs were in accordance with the literature on human and environmental OHC data, which suggests that there is potential for using starling eggs as a biomonitoring tool on a large geographical scale. This article is available under the Creative Commons CC-BY-NC-ND license and permits non-commercial use of the work as published, without adaptation or alteration provided the work is fully attributed
    • …
    corecore