86 research outputs found

    Kinematic Measures of Imitation Fidelity in Primary School Children

    Get PDF
    We sought to develop a method for measuring imitation accuracy objectively in primary school children. Children imitated a model drawing shapes on the same computer-tablet interface they saw used in video clips, allowing kinematics of model and observers' actions to be directly compared. Imitation accuracy was reported as a correlation reflecting the statistical dependency between values of the model's and participant's sets of actions, or as a mean absolute difference between them. Children showed consistent improvement in imitation accuracy across middle childhood. They appeared to rationalize the demands of the task by remembering duration and size of action, which enabled them to reenact speed through motor-planning mechanisms. Kinematic measures may provide a window into the cognitive mechanisms involved in imitation

    The 'Goldilocks Zone': getting the measure of manual asymmetries

    Get PDF
    Some studies have shown that manual asymmetries decrease in older age. These results have often been explained with reference to models of reduced hemispheric specialisation. An alternative explanation, however, is that hand differences are subtle, and capturing them requires tasks that yield optimal performance with both hands. Whereas the hemispheric specialisation account implies that reduced manual asymmetries should be reliably observed in older adults, the ‘measurement difficulty’ account suggests that manual asymmetries will be hard to detect unless a task has just the right level of difficulty – i.e. within the ‘Goldilocks Zone’, where it is not too easy or too hard, but just right. Experiment One tested this hypothesis and found that manual asymmetries were only detected when participants performed in this zone; specifically, performance on a tracing task was only superior in the preferred hand when task constraints were high (i.e. fast speed tracing). Experiment Two used three different tasks to examine age differences in manual asymmetries; one task produced no asymmetries, whilst two tasks revealed asymmetries in both younger and older groups (with poorer overall performance in the old group across all tasks). Experiment Three revealed task-dependent asymmetries in both age groups, but highlighted further detection difficulties linked with the metric of performance and compensatory strategies used by participants. Results are discussed with reference to structural learning theory, whereby we suggest that the processes of inter-manual transfer lead to relatively small performance differences between the hands (despite a strong phenomenological sense of performance disparities)

    Manual control age and sex differences in 4 to 11 year old children

    Get PDF
    To what degree does being male or female influence the development of manual skills in pre-pubescent children? This question is important because of the emphasis placed on developing important new manual skills during this period of a child's education (e.g. writing, drawing, using computers). We investigated age and sex-differences in the ability of 422 children to control a handheld stylus. A task battery deployed using tablet PC technology presented interactive visual targets on a computer screen whilst simultaneously recording participant's objective kinematic responses, via their interactions with the on-screen stimuli using the handheld stylus. The battery required children use the stylus to: (i) make a series of aiming movements, (ii) trace a series of abstract shapes and (iii) track a moving object. The tasks were not familiar to the children, allowing measurement of a general ability that might be meaningfully labelled 'manual control', whilst minimising culturally determined differences in experience (as much as possible). A reliable interaction between sex and age was found on the aiming task, with girls' movement times being faster than boys in younger age groups (e.g. 4-5 years) but with this pattern reversing in older children (10-11 years). The improved performance in older boys on the aiming task is consistent with prior evidence of a male advantage for gross-motor aiming tasks, which begins to emerge during adolescence. A small but reliable sex difference was found in tracing skill, with girls showing a slightly higher level of performance than boys irrespective of age. There were no reliable sex differences between boys and girls on the tracking task. Overall, the findings suggest that prepubescent girls are more likely to have superior manual control abilities for performing novel tasks. However, these small population differences do not suggest that the sexes require different educational support whilst developing their manual skills

    Skill acquisition as a function of age, hand and task difficulty: Interactions between cognition and action

    Get PDF
    Some activities can be meaningfully dichotomised as ‘cognitive’ or ‘sensorimotor’ in nature—but many cannot. This has radical implications for understanding activity limitation in disability. For example, older adults take longer to learn the serial order of a complex sequence but also exhibit slower, more variable and inaccurate motor performance. So is their impaired skill acquisition a cognitive or motor deficit? We modelled sequence learning as a process involving a limited capacity buffer (working memory), where reduced performance restricts the number of elements that can be stored. To test this model, we examined the relationship between motor performance and sequence learning. Experiment 1 established that older adults were worse at learning the serial order of a complex sequence. Experiment 2 found that participants showed impaired sequence learning when the non-preferred hand was used. Experiment 3 confirmed that serial order learning is impaired when motor demands increase (as the model predicted). These results can be captured by reinforcement learning frameworks which suggest sequence learning will be constrained both by an individual’s sensorimotor ability and cognitive capacity

    Low Fidelity Imitation of Atypical Biological Kinematics in Autism Spectrum Disorders Is Modulated by Self-Generated Selective Attention.

    Get PDF
    We examined whether adults with autism had difficulty imitating atypical biological kinematics. To reduce the impact that higher-order processes have on imitation we used a non-human agent model to control social attention, and removed end-state target goals in half of the trials to minimise goal-directed attention. Findings showed that only neurotypical adults imitated atypical biological kinematics. Adults with autism did, however, become significantly more accurate at imitating movement time. This confirmed they engaged in the task, and that sensorimotor adaptation was self-regulated. The attentional bias to movement time suggests the attenuation in imitating kinematics might be a compensatory strategy due to deficits in lower-level visuomotor processes associated with self-other mapping, or selective attention modulated the processes that represent biological kinematics

    Evaluation of a robot-assisted therapy for children with autism and intellectual disability

    Get PDF
    It is well established that robots can be suitable assistants in the care and treatment of children with Autism Spectrum Disorder (ASD). However, the majority of the research focuses on stand-alone interventions, high-functioning individuals and the success is evaluated via qualitative analysis of videos recorded during the interaction. In this paper, we present a preliminary evaluation of our on-going research on integrating robot-assisted therapy in the treatment of children with ASD and Intellectual Disability (ID), which is the most common case. The experiment described here integrates a robot-assisted imitation training in the standard treat‐ ment of six hospitalised children with various level of ID, who were engaged by a robot on imitative tasks and their progress assessed via a quantitative psycho- diagnostic tool. Results show success in the training and encourage the use of a robotic assistant in the care of children with ASD and ID with the exception of those with profound ID, who may need a different approach

    Atypical audiovisual speech integration in infants at risk for autism

    Get PDF
    The language difficulties often seen in individuals with autism might stem from an inability to integrate audiovisual information, a skill important for language development. We investigated whether 9-month-old siblings of older children with autism, who are at an increased risk of developing autism, are able to integrate audiovisual speech cues. We used an eye-tracker to record where infants looked when shown a screen displaying two faces of the same model, where one face is articulating/ba/and the other/ga/, with one face congruent with the syllable sound being presented simultaneously, the other face incongruent. This method was successful in showing that infants at low risk can integrate audiovisual speech: they looked for the same amount of time at the mouths in both the fusible visual/ga/− audio/ba/and the congruent visual/ba/− audio/ba/displays, indicating that the auditory and visual streams fuse into a McGurk-type of syllabic percept in the incongruent condition. It also showed that low-risk infants could perceive a mismatch between auditory and visual cues: they looked longer at the mouth in the mismatched, non-fusible visual/ba/− audio/ga/display compared with the congruent visual/ga/− audio/ga/display, demonstrating that they perceive an uncommon, and therefore interesting, speech-like percept when looking at the incongruent mouth (repeated ANOVA: displays x fusion/mismatch conditions interaction: F(1,16) = 17.153, p = 0.001). The looking behaviour of high-risk infants did not differ according to the type of display, suggesting difficulties in matching auditory and visual information (repeated ANOVA, displays x conditions interaction: F(1,25) = 0.09, p = 0.767), in contrast to low-risk infants (repeated ANOVA: displays x conditions x low/high-risk groups interaction: F(1,41) = 4.466, p = 0.041). In some cases this reduced ability might lead to the poor communication skills characteristic of autism

    Auditory-Motor Mapping Training as an Intervention to Facilitate Speech Output in Non-Verbal Children with Autism: A Proof of Concept Study

    Get PDF
    Although up to 25% of children with autism are non-verbal, there are very few interventions that can reliably produce significant improvements in speech output. Recently, a novel intervention called Auditory-Motor Mapping Training (AMMT) has been developed, which aims to promote speech production directly by training the association between sounds and articulatory actions using intonation and bimanual motor activities. AMMT capitalizes on the inherent musical strengths of children with autism, and offers activities that they intrinsically enjoy. It also engages and potentially stimulates a network of brain regions that may be dysfunctional in autism. Here, we report an initial efficacy study to provide ‘proof of concept’ for AMMT. Six non-verbal children with autism participated. Prior to treatment, the children had no intelligible words. They each received 40 individual sessions of AMMT 5 times per week, over an 8-week period. Probe assessments were conducted periodically during baseline, therapy, and follow-up sessions. After therapy, all children showed significant improvements in their ability to articulate words and phrases, with generalization to items that were not practiced during therapy sessions. Because these children had no or minimal vocal output prior to treatment, the acquisition of speech sounds and word approximations through AMMT represents a critical step in expressive language development in children with autism
    corecore