189 research outputs found

    Universal Features in Phonological Neighbor Networks

    Get PDF
    Human speech perception involves transforming a countinuous acoustic signal into discrete linguistically meaningful units (phonemes) while simultaneously causing a listener to activate words that are similar to the spoken utterance and to each other. The Neighborhood Activation Model posits that phonological neighbors (two forms [words] that differ by one phoneme) compete significantly for recognition as a spoken word is heard. This definition of phonological similarity can be extended to an entire corpus of forms to produce a phonological neighbor network (PNN). We study PNNs for five languages: English, Spanish, French, Dutch, and German. Consistent with previous work, we find that the PNNs share a consistent set of topological features. Using an approach that generates random lexicons with increasing levels of phonological realism, we show that even random forms with minimal relationship to any real language, combined with only the empirical distribution of language-specific phonological form lengths, are sufficient to produce the topological properties observed in the real language PNNs. The resulting pseudo-PNNs are insensitive to the level of lingustic realism in the random lexicons but quite sensitive to the shape of the form length distribution. We therefore conclude that “universal” features seen across multiple languages are really string universals, not language universals, and arise primarily due to limitations in the kinds of networks generated by the one-step neighbor definition. Taken together, our results indicate that caution is warranted when linking the dynamics of human spoken word recognition to the topological properties of PNNs, and that the investigation of alternative similarity metrics for phonological forms should be a priorit

    Evaluation of the Onset of Protective Immunity from Administration of a Modified-live, Non-adjuvanted Vaccine prior to Intranasal Challenge with Bovine Herpesvirus-1

    Get PDF
    Study objectives were to determine if subcutaneous administration of a modified-live, non-adjuvanted vaccine containing bovine herpesvirus-1 (BHV-1) at five, three, or two days pre-challenge, would reduce clinical signs, rectal temperatures, and viral shedding, and enhance serological response to BHV-1. Colostrumdeprived, neonatal calves (n = 48) were randomly assigned to six treatment groups, each containing eight calves. Treatment groups were based on administration of vaccine (VAC) or saline controls (CON) and day of administration (day -5, -3 or -2) relative to intranasal BHV-1 challenge (day 0). Following challenge, calves were monitored for clinical signs, rectal temperature, seroconversion, and quantity of BHV-1 recovered by virus isolation from nasal swabs. Data for the evaluation period (days 4-14) were analyzed using multivariable statistics. Day -5 and -3 VAC groups had fewer (P \u3c 0.05) days of clinical illness compared to CON. Rectal temperatures were lower (P \u3c 0.05) during days 4-8 for each of the VAC groups as compared to combined CON groups. CON calves shed BHV-1 for more days than calves vaccinated on day -5 (P \u3c 0.01), day -3 (P = 0.06), or day -2 (P = 0.06). Mean concentrations of nasal BHV-1 also differed (P \u3c 0.05) between combined CON groups and each of the VAC groups during at least one study day. Calves in the VAC groups (median = 10 days) seroconverted to BHV-1 (P \u3c 0.01) sooner than CON calves (median = 14 days). This study demonstrated that the use of a non-adjuvanted MLV vaccine in neonatal calves can reduce the effects of BHV-1 challenge soon after vaccination

    The Dominion Range Ice Core, Queen Maud Mountains, Antarctica—General Site and Core Characteristics with Implications

    Get PDF
    The Transantarctic Mountains of East Antarctica provide a new milieu for retrieval of ice-core records. We report here on the initial findings from the first of these records, the Dominion Range ice-core record. Sites such as the Dominion Range are valuable for the recovery of records detailing climate change, volcanic activity, and changes in the chemistry of the atmosphere. The unique geographic location of this site and a relatively low accumulation rate combine to provide a relatively long record of change for this potentially sensitive climatic region. As such, information concerning the site and general core characteristics are presented, including ice surface, ice thickness, bore-hole temperature, mean annual net accumulation, crystal size, crystal fabric, oxygen-isotope composition, and examples of ice chemistry and isotopic composition of trapped gases

    Family-Centered Preventive Intervention for Military Families: Implications for Implementation Science

    Get PDF
    In this paper, we report on the development and dissemination of a preventive intervention, Families OverComing Under Stress (FOCUS), an eight-session family-centered intervention for families facing the impact of wartime deployments. Specific attention is given to the challenges of rapidly deploying a prevention program across diverse sites, as well as to key elements of implementation success. FOCUS, developed by a UCLA-Harvard team, was disseminated through a large-scale demonstration project funded by the United States Bureau of Navy Medicine and Surgery (BUMED) beginning in 2008 at 7 installations and expanding to 14 installations by 2010. Data are presented to describe the range of services offered, as well as initial intervention outcomes. It proved possible to develop the intervention rapidly and to deploy it consistently and effectively

    US SOLAS Science Report

    Get PDF
    The article of record may be found at https://doi.org/10.1575/1912/27821The Surface Ocean – Lower Atmosphere Study (SOLAS) (http://www.solas-int.org/) is an international research initiative focused on understanding the key biogeochemical-physical interactions and feedbacks between the ocean and atmosphere that are critical elements of climate and global biogeochemical cycles. Following the release of the SOLAS Decadal Science Plan (2015-2025) (Brévière et al., 2016), the Ocean-Atmosphere Interaction Committee (OAIC) was formed as a subcommittee of the Ocean Carbon and Biogeochemistry (OCB) Scientific Steering Committee to coordinate US SOLAS efforts and activities, facilitate interactions among atmospheric and ocean scientists, and strengthen US contributions to international SOLAS. In October 2019, with support from OCB, the OAIC convened an open community workshop, Ocean-Atmosphere Interactions: Scoping directions for new research with the goal of fostering new collaborations and identifying knowledge gaps and high-priority science questions to formulate a US SOLAS Science Plan. Based on presentations and discussions at the workshop, the OAIC and workshop participants have developed this US SOLAS Science Plan. The first part of the workshop and this Science Plan were purposefully designed around the five themes of the SOLAS Decadal Science Plan (2015-2025) (Brévière et al., 2016) to provide a common set of research priorities and ensure a more cohesive US contribution to international SOLAS.This report was developed with federal support of NSF (OCE-1558412) and NASA (NNX17AB17G).This report was developed with federal support of NSF (OCE-1558412) and NASA (NNX17AB17G)

    US SOLAS Science Report

    Get PDF
    The Surface Ocean – Lower Atmosphere Study (SOLAS) (http://www.solas-int.org/) is an international research initiative focused on understanding the key biogeochemical-physical interactions and feedbacks between the ocean and atmosphere that are critical elements of climate and global biogeochemical cycles. Following the release of the SOLAS Decadal Science Plan (2015-2025) (Brévière et al., 2016), the Ocean-Atmosphere Interaction Committee (OAIC) was formed as a subcommittee of the Ocean Carbon and Biogeochemistry (OCB) Scientific Steering Committee to coordinate US SOLAS efforts and activities, facilitate interactions among atmospheric and ocean scientists, and strengthen US contributions to international SOLAS. In October 2019, with support from OCB, the OAIC convened an open community workshop, Ocean-Atmosphere Interactions: Scoping directions for new research with the goal of fostering new collaborations and identifying knowledge gaps and high-priority science questions to formulate a US SOLAS Science Plan. Based on presentations and discussions at the workshop, the OAIC and workshop participants have developed this US SOLAS Science Plan. The first part of the workshop and this Science Plan were purposefully designed around the five themes of the SOLAS Decadal Science Plan (2015-2025) (Brévière et al., 2016) to provide a common set of research priorities and ensure a more cohesive US contribution to international SOLAS.This report was developed with federal support of NSF (OCE-1558412) and NASA (NNX17AB17G)

    Mechanisms of Risk and Resilience in Military Families: Theoretical and Empirical Basis of a Family-Focused Resilience Enhancement Program

    Get PDF
    Recent studies have confirmed that repeated wartime deployment of a parent exacts a toll on military children and families and that the quality and functionality of familial relations is linked to force preservation and readiness. As a result, family-centered care has increasingly become a priority across the military health system. FOCUS (Families OverComing Under Stress), a family-centered, resilience-enhancing program developed by a team at UCLA and Harvard Schools of Medicine, is a primary initiative in this movement. In a large-scale implementation project initiated by the Bureau of Navy Medicine, FOCUS has been delivered to thousands of Navy, Marine, Navy Special Warfare, Army, and Air Force families since 2008. This article describes the theoretical and empirical foundation and rationale for FOCUS, which is rooted in a broad conception of family resilience. We review the literature on family resilience, noting that an important next step in building a clinically useful theory of family resilience is to move beyond developing broad “shopping lists” of risk indicators by proposing specific mechanisms of risk and resilience. Based on the literature, we propose five primary risk mechanisms for military families and common negative “chain reaction” pathways through which they undermine the resilience of families contending with wartime deployments and parental injury. In addition, we propose specific mechanisms that mobilize and enhance resilience in military families and that comprise central features of the FOCUS Program. We describe these resilience-enhancing mechanisms in detail, followed by a discussion of the ways in which evaluation data from the program’s first 2 years of operation supports the proposed model and the specified mechanisms of action
    corecore