45 research outputs found
Arsenic in Soils and Forages from Poultry Litter-Amended Pastures
In regions of concentrated poultry production, poultry litter (PL) that contains significant quantities of trace elements is commonly surface-applied to pastures at high levels over multiple years. This study examined the effect of long-term applications of PL on soil concentrations of arsenic (As), copper (Cu), Zinc (Zn), and the uptake of these elements by bermuda grass grown on Cecil (well-drained) and Sedgefield (somewhat poorly-drained) soils. The results showed that concentrations of As, Cu, and Zn in soils that had received surface-applied PL over a 14-year period were significantly greater than untreated soil at 0–2.5 and 2.5–7.5 cm depths. However, the levels were well below the USEPA loading limits established for municipal biosolids. Arsenic fractionation showed that concentrations of all As fractions were significantly greater in PL-amended soils compared to untreated soils at 0–2.5 and 2.5–7.5 cm depths. The residual fraction was the predominant form of As in all soils. The water-soluble and NaHCO3-associated As were only 2% of the total As. Significant differences were found in concentrations of these trace elements and phosphorus (P) in forage from PL-amended soils compared to that in untreated plots. The concentrations of Cu, Zn, As, and P were significantly greater in forage from Sedgefield amended soil compared to Cecil soil, but were in all cases below levels of environmental concern
Three Drosophila Hox Complex microRNAs Do Not Have Major Effects on Expression of Evolutionarily Conserved Hox Gene Targets during Embryogenesis
The discovery of microRNAs has resulted in a major expansion of the number of molecules known to be involved in gene regulation. Elucidating the functions of animal microRNAs has posed a significant challenge as their target interactions with messenger RNAs do not adhere to simple rules. Of the thousands of known animal microRNAs, relatively few microRNA:messenger RNA regulatory interactions have been biologically validated in an normal organismal context. Here we present evidence that three microRNAs from the Hox complex in Drosophila (miR-10-5p, miR-10-3p, miR-iab-4-5p) do not have significant effects during embryogenesis on the expression of Hox genes that contain high confidence microRNAs target sites in the 3′ untranslated regions of their messenger RNAs. This is significant, in that it suggests that many predicted microRNA-target interactions may not be biologically relevant, or that the outcomes of these interactions may be so subtle that mutants may only show phenotypes in specific contexts, such as in environmental stress conditions, or in combinations with other microRNA mutations
Large-Scale Gene-Centric Meta-Analysis across 39 Studies Identifies Type 2 Diabetes Loci
To identify genetic factors contributing to type 2 diabetes (T2D), we performed large-scale meta-analyses by using a custom similar to 50,000 SNP genotyping array (the ITMAT-Broad-CARe array) with similar to 2000 candidate genes in 39 multiethnic population-based studies, case-control studies, and clinical trials totaling 17,418 cases and 70,298 controls. First, meta-analysis of 25 studies comprising 14,073 cases and 57,489 controls of European descent confirmed eight established T2D loci at genome-wide significance. In silico follow-up analysis of putative association signals found in independent genome-wide association studies (including 8,130 cases and 38,987 controls) performed by the DIAGRAM consortium identified a T2D locus at genome-wide significance (GATAD2A/CILP2/PBX4; p = 5.7 x 10(-9)) and two loci exceeding study-wide significance (SREBF1, and TH/INS; p <2.4 x 10(-6)). Second, meta-analyses of 1,986 cases and 7,695 controls from eight African-American studies identified study-wide-significant (p = 2.4 x 10(-7)) variants in HMGA2 and replicated variants in TCF7L2 (p = 5.1 x 10(-15)). Third, conditional analysis revealed multiple known and novel independent signals within five T2D-associated genes in samples of European ancestry and within HMGA2 in African-American samples. Fourth, a multiethnic meta-analysis of all 39 studies identified T2D-associated variants in BCL2 (p = 2.1 x 10(-8)). Finally, a composite genetic score of SNPs from new and established T2D signals was significantly associated with increased risk of diabetes in African-American, Hispanic, and Asian populations. In summary, large-scale meta-analysis involving a dense gene-centric approach has uncovered additional loci and variants that contribute to T2D risk and suggests substantial overlap of T2D association signals across multiple ethnic groups
A large-scale genome-wide association study meta-analysis of cannabis use disorder
Summary Background Variation in liability to cannabis use disorder has a strong genetic component (estimated twin and family heritability about 50–70%) and is associated with negative outcomes, including increased risk of psychopathology. The aim of the study was to conduct a large genome-wide association study (GWAS) to identify novel genetic variants associated with cannabis use disorder. Methods To conduct this GWAS meta-analysis of cannabis use disorder and identify associations with genetic loci, we used samples from the Psychiatric Genomics Consortium Substance Use Disorders working group, iPSYCH, and deCODE (20 916 case samples, 363 116 control samples in total), contrasting cannabis use disorder cases with controls. To examine the genetic overlap between cannabis use disorder and 22 traits of interest (chosen because of previously published phenotypic correlations [eg, psychiatric disorders] or hypothesised associations [eg, chronotype] with cannabis use disorder), we used linkage disequilibrium score regression to calculate genetic correlations. Findings We identified two genome-wide significant loci: a novel chromosome 7 locus (FOXP2, lead single-nucleotide polymorphism [SNP] rs7783012; odds ratio [OR] 1·11, 95% CI 1·07–1·15, p=1·84 × 10−9) and the previously identified chromosome 8 locus (near CHRNA2 and EPHX2, lead SNP rs4732724; OR 0·89, 95% CI 0·86–0·93, p=6·46 × 10−9). Cannabis use disorder and cannabis use were genetically correlated (rg 0·50, p=1·50 × 10−21), but they showed significantly different genetic correlations with 12 of the 22 traits we tested, suggesting at least partially different genetic underpinnings of cannabis use and cannabis use disorder. Cannabis use disorder was positively genetically correlated with other psychopathology, including ADHD, major depression, and schizophrenia. Interpretation These findings support the theory that cannabis use disorder has shared genetic liability with other psychopathology, and there is a distinction between genetic liability to cannabis use and cannabis use disorder. Funding National Institute of Mental Health; National Institute on Alcohol Abuse and Alcoholism; National Institute on Drug Abuse; Center for Genomics and Personalized Medicine and the Centre for Integrative Sequencing; The European Commission, Horizon 2020; National Institute of Child Health and Human Development; Health Research Council of New Zealand; National Institute on Aging; Wellcome Trust Case Control Consortium; UK Research and Innovation Medical Research Council (UKRI MRC); The Brain & Behavior Research Foundation; National Institute on Deafness and Other Communication Disorders; Substance Abuse and Mental Health Services Administration (SAMHSA); National Institute of Biomedical Imaging and Bioengineering; National Health and Medical Research Council (NHMRC) Australia; Tobacco-Related Disease Research Program of the University of California; Families for Borderline Personality Disorder Research (Beth and Rob Elliott) 2018 NARSAD Young Investigator Grant; The National Child Health Research Foundation (Cure Kids); The Canterbury Medical Research Foundation; The New Zealand Lottery Grants Board; The University of Otago; The Carney Centre for Pharmacogenomics; The James Hume Bequest Fund; National Institutes of Health: Genes, Environment and Health Initiative; National Institutes of Health; National Cancer Institute; The William T Grant Foundation; Australian Research Council; The Virginia Tobacco Settlement Foundation; The VISN 1 and VISN 4 Mental Illness Research, Education, and Clinical Centers of the US Department of Veterans Affairs; The 5th Framework Programme (FP-5) GenomEUtwin Project; The Lundbeck Foundation; NIH-funded Shared Instrumentation Grant S10RR025141; Clinical Translational Sciences Award grants; National Institute of Neurological Disorders and Stroke; National Heart, Lung, and Blood Institute; National Institute of General Medical Sciences.Peer reviewe
Lincoln\u27s Enduring Legacy: Perspectives from Great Thinkers, Great Leaders, and the American Experiment
Coming on the heels of the bicentennial of Abraham Lincoln\u27s birth, Lincoln\u27s Enduring Legacy offers highly readable and accessible perspectives on Lincoln at 200 in terms of his impact on great leaders and thinkers and his place in American history. The book explores how Lincoln\u27s words and deeds have influenced the pursuit of justice and freedom and the practice of democracy in the century and a half since he governed. Lincoln, as an abolitionist, the architect of Reconstruction, an avowed Unionist, a wordsmith and rhetorician, his age\u27s foremost prophet for democracy, and America\u27s greatest president remains an iconic image in American memory.https://spiral.lynn.edu/facbooks/1006/thumbnail.jp
Genetic variation in surfactant protein-A2 alters responses to ozone.
BackgroundIncreased exposure to Ozone (O3) is associated with adverse health effects in individuals afflicted with respiratory diseases. Surfactant protein-A (SP-A), encoded by SP-A1 and SP-A2, is the largest protein component in pulmonary surfactant and is functionally impaired by O3-oxidation.ObjectiveWe used humanized SP-A2 transgenic mice with allelic variation corresponding to a glutamine (Q) to lysine (K) amino acid substitution at position 223 in the lectin domain to determine the impact of this genetic variation in regards to O3 exposure.MethodsMice were exposed to 2ppm O3 or Filtered Air (FA) for 3 hours and 24 hrs post-challenge pulmonary function tests and other parameters associated with inflammation were assessed in the bronchoalveolar lavage (BAL) fluid and lung tissue. Additionally, mouse tracheal epithelial cells were cultured and TEER measurements recorded for each genotype to determine baseline epithelial integrity.ResultsCompared to FA, O3 exposure led to significantly increased sensitivity to methacholine challenge in all groups of mice. SP-A2 223Q variant mice were significantly protected from O3-induced AHR compared to SP-A-/- and SP-A2 223K mice. Neutrophilia was observed in all genotypes of mice post O3-exposure, however, SP-A2 223Q mice had a significantly lower percentage of neutrophils compared to SP-A-/- mice. Albumin levels in BAL were unchanged in O3-exposed SP-A2 223Q mice compared to their FA controls, while levels were significantly increased in all other genotypes of O3-exposed mice. SP-A 223Q MTECS has significant higher TEER values than all other genotypes, and WT MTECS has significantly higher TEER than the SP-A KO and SP-A 223K MTECS.SignificanceTaken together, our study suggests that expression of a glutamine (Q) as position 223 in SP-A2, as opposed to expression of lysine (K), is more protective in acute exposures to ozone and results in attenuated O3-induced AHR, neutrophilia, and vascular permeability
The value of applying commercial fishers' experience to designed surveys for identifying characteristics of essential fish habitat for adult summer flounder
Identifying the habitat requirements of marine fish is necessary to conserve and manage their populations, but these requirements are poorly understood for many species. One method of screening for important habitat characteristics is to identify differences in habitat features between areas of high and low fish abundance. We tested the association between abundance of adult summer flounder Paralichthys dentatus and benthic habitat features at two study areas in the Middle Atlantic Bight in summer 2004. The study included trawl and remote-sensing surveys that were designed and conducted with the assistance of commercial fishers. Within each area, a local commercial fisher designated specific locations a priori as productive or unproductive for fishing. Summer flounder abundance, as measured by mean catch per area swept, was significantly greater at sites designated as productive than at sites designated as unproductive (6.5 times greater in Maryland and 4.7 times greater in Rhode Island). These results indicate that summer flounder were attracted consistently to localized habitats that must have had different characteristics than other nearby locations. Habitat variables associated with the substrate (e.g., particle size, bottom shape, and presence of sessile organisms) were measured along trawl paths using underwater video imagery. The measured variables did not explain abundance well, suggesting that microscale characteristics of the substrate did not affect summer flounder distribution. Summer flounder were most abundant at depths of 10-20 m; however, both high and low catch rates occurred in this depth range, indicating that other factors also were important. These results suggest that additional localized variables merit further investigation to determine their importance to summer flounder. This study demonstrates the importance of combining fishers' knowledge and experience with planned surveys to identify essential habitat features for fish